Displaying all 3 publications

Abstract:
Sort:
  1. Suhaimi H, Abdul Rahman MI, Ashaari A, Ikhwanuddin M, Wan Rasdi N
    PeerJ, 2024;12:e17092.
    PMID: 38563012 DOI: 10.7717/peerj.17092
    Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.
  2. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132134.
    PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134
    The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
  3. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TS, Bachi NA, Abu Tahrim N, Abd Hamid HH, et al.
    PeerJ, 2023;11:e14719.
    PMID: 36748091 DOI: 10.7717/peerj.14719
    The environmental fate of non-steroidal anti-inflammatory drugs (NSAIDs) in the urban water cycle is still uncertain and their status is mainly assessed based on specific water components and information on human risk assessments. This study (a) explores the environmental fate of NSAIDs (ibuprofen, IBU; naproxen, NAP; ketoprofen, KET; diazepam, DIA; and diclofenac, DIC) in the urban water cycle, including wastewater, river, and treated water via gas chromatography-mass spectrophotometry (GCMS), (b) assesses the efficiency of reducing the targeted NSAIDs in sewage treatment plant (STP) using analysis of variance (ANOVA), and (c) evaluates the ecological risk assessment of these drugs in the urban water cycle via teratogenic index (TI) and risk quotient (RQ). The primary receptor of contaminants comes from urban areas, as a high concentration of NSAIDs is detected (ranging from 5.87 × 103 to 7.18 × 104 ng/L). The percentage of NSAIDs removal in STP ranged from 25.6% to 92.3%. The NAP and KET were still detected at trace levels in treated water, indicating the persistent presence in the water cycle. The TI values for NAP and DIA (influent and effluent) were more than 1, showing a risk of a teratogenic effect. The IBU, KET, and DIC had values of less than 1, indicating the risk of lethal embryo effects. The NAP and DIA can be classified as Human Pregnancy Category C (2.1 > TI ≥ 0.76). This work proved that these drugs exist in the current urban water cycle, which could induce adverse effects on humans and the environment (RQ in high and low-risk categories). Therefore, they should be minimized, if not eliminated, from the primary sources of the pollutant (i.e., STPs). These pollutants should be considered a priority to be monitored, given focus to, and listed in the guideline due to their persistent presence in the urban water cycle.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links