Displaying all 4 publications

Abstract:
Sort:
  1. Wild TF
    Pathol. Biol., 2009 Mar;57(2):188-96.
    PMID: 18511217 DOI: 10.1016/j.patbio.2008.04.006
    Paramyxoviruses have been implicated in both animal and human infections. Some viruses, such as Morbilliviruses are responsible for large-scale epidemics. However, there are limited observations of these viruses crossing the host species barrier in nature. In 1994, in Australia a fatal infection in horses and humans was identified to be caused by a new Paramyxovirus, Hendra virus (HeV), and in 1998 in Malaysia, a closely related virus, Nipah virus (NiV) was responsible for fatal infections in pigs and humans. These two viruses were sufficiently different from previously described Paramyxoviruses to create a new genus, Henipaviruses. The natural reservoir of these viruses was the fruit bat (Pteropus), which is found in regions extending from the western Pacific to the eastern coast of Africa. Serological studies have established that as many as half the fruit bats in colonies throughout these regions may have antibodies against this family of viruses. The availability of diagnostic reagents for Nipah virus in humans have identified infections in several countries including, Bangladesh, India and Indonesia. In some of these epidemics, mortality in humans exceeds 75%. Deforestation is probably responsible for fruit bats leaving their ecological niches and approaching farms and villages. The infection of humans and animals may occur via contaminated foods or in certain cases by animals to man. At present, only within close families has human-to-human transmission been proposed. Henipavirus infections are probably more widespread than it is at presently known and so it is important to have an intense monitoring for these diseases, especially in countries where large-scale deforestation is happening.
  2. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H, Wild TF, et al.
    Proc Natl Acad Sci U S A, 2006 Oct 31;103(44):16508-13.
    PMID: 17053073
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.
  3. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J Virol Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
  4. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, et al.
    Am J Pathol, 2003 Nov;163(5):2127-37.
    PMID: 14578210 DOI: 10.1016/S0002-9440(10)63569-9
    A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels (Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR, Nipah Virus Pathology Working Group: Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002, 161:2153-2167). We describe here a golden hamster (Mesocricetus auratus) model that appears to reproduce the pathology and pathogenesis of acute human Nipah infection. Hamsters infected by intranasal or intraperitoneal routes died within 9 to 29 days or 5 to 9 days, respectively. Pathological lesions were most severe and extensive in the hamster brain. Vasculitis, thrombosis, and more rarely, multinucleated endothelial syncytia, were found in blood vessels of multiple organs. Viral antigen and RNA were localized in both vascular and extravascular tissues including neurons, lung, kidney, and spleen, as demonstrated by immunohistochemistry and in situ hybridization, respectively. Paramyxoviral-type nucleocapsids were identified in neurons and in vessel walls. At the terminal stage of infection, virus and/or viral RNA could be recovered from most solid organs and urine, but not from serum. The golden hamster is proposed as a suitable model for further studies including pathogenesis studies, anti-viral drug testing, and vaccine development against acute Nipah infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links