Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J. Virol. Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
  2. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, et al.
    J. Virol. Methods, 2004 Sep 15;120(2):229-37.
    PMID: 15288966
    Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
  3. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J. Virol. Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
  4. Mohd Jaafar F, Attoui H, Gallian P, Isahak I, Wong KT, Cheong SK, et al.
    J. Virol. Methods, 2004 Mar 01;116(1):55-61.
    PMID: 14715307
    Banna virus (BAV, genus Seadornavirus, family Reoviridae) is an arbovirus suspected to be responsible for encephalitis in humans. Two genotypes of this virus are distinguishable: A (Chinese isolate, BAV-Ch) and B (Indonesian isolate, BAV-In6969) which exhibit only 41% amino-acid identity in the sequence of their VP9. The VP7 to VP12 of BAV-Ch and VP9 of BAV-In6969 were expressed in bacteria using pGEX-4T-2 vector. VP9 was chosen to establish an ELISA for BAV, based mainly on two observations: (i). VP9 is a major protein in virus-infected cells and is a capsid protein (ii). among all the proteins expressed, VP9 was obtained in high amount and showed the highest immuno-reactivity to anti-BAV ascitic fluid. The VP9s ELISA was evaluated in three populations: French blood donors and two populations (blood donors and patients with a neurological syndrome) from Malaysia, representing the region where the virus was isolated in the past. The specificity of this ELISA was >98%. In mice injected with live BAV, the assay detected IgG-antibody to BAV infection 21 days post-injection, which was confirmed by Western blot using BAV-infected cells. The VP9 ELISA permits to determine the sero-status of a population without special safety precautions and without any requirements to propagate the BAV. This test should be a useful tool for epidemiological survey of BAV.
  5. Rasool NB, Monroe SS, Glass RI
    J. Virol. Methods, 2002 Feb;100(1-2):1-16.
    PMID: 11742648
    Four nucleic acid extraction protocols were examined for their suitability for extraction of the ssRNA, dsRNA and dsDNA genomes of gastroenteritis viruses, for PCR detection. Protocol (A), employed specimen lysis with guanidinium thiocyanate, extraction with phenol-chloroform-isoamyl alcohol and nucleic acid purification by size-fractionated silica particles. Protocol (B), utilised specimen lysis with guanidinium thiocyanate and nucleic acid purification by silica, followed by phenol-chloroform-isoamyl alcohol extraction. Protocol (C), employed specimen lysis with guanidinium thiocyanate and nucleic acid purification by RNAID glass powder. Protocol (D), employed specimen lysis with sodium dodecyl sulphate, proteinase K digestion and extraction with phenol-chloroform-isoamyl alcohol. Of the four protocols, (B) appeared to be a suitable candidate 'universal' nucleic acid extraction procedure for PCR detection of different viral agents of gastroenteritis in a single nucleic acid extract of a faecal specimen, irrespective of genome composition. Omission of the phenol-chloroform extraction step did not affect negatively the ability of protocol (B) to allow PCR detection of gastroenteritis viruses in faecal specimens. PCR detection of NLVs, astroviruses, rotaviruses and adenoviruses, in single nucleic acid extracts of faecal specimens obtained from the field, confirmed the universality of the modified protocol (B). We propose the modified protocol (B) as a 'universal' nucleic acid extraction procedure, for monoplex PCR detection of gastroenteritis viruses in single nucleic acid extracts of faecal specimens and for development of multiplex PCR for their simultaneous detection.
  6. Kashiwazaki Y, Na YN, Tanimura N, Imada T
    J. Virol. Methods, 2004 Nov;121(2):259-61.
    PMID: 15381364
    A monoclonal antibody (MAb) based solid-phase blocking ELISA was developed for detection of antibodies to Nipah virus. The ELISA was designed to detect remaining antigens on the plate with anti-Nipah MAb conjugate after the reaction with sample serum, and enabled simple procedure, detection of neutralizing antibody to Nipah virus, and application of samples from different animal species. Forty of 200 swine reference sera examined were positive by the ELISA, of which thirty seven were found positive by serum neutralization test. Sera from a total of 131 fruit bats captured in Malaysia were also tested and all found negative by the both tests. It is considered that the solid-phase blocking ELISA can be used as a screening test for Nipah virus infection followed by the serum neutralization test as confirmatory test.
  7. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM
    J. Virol. Methods, 2003 Feb;107(2):163-7.
    PMID: 12505630
    Feline calicivirus (FCV) has been used by researchers as a surrogate for Norwalk virus (NV), since they share a similar genomic organization, physicochemical characteristics, and are grouped in the same family, Caliciviridae. Unlike NV, however, FCV can grow in established cell lines and produce a syncytial form of cytopathic effect. In this report, we describe the development and standardization of a plaque assay for FCV using monolayers of an established line of feline kidney (CrFK) cells in 12-well cell culture plates. The assay method has demonstrated reproducibility, ease of performance and resulted in clear plaque zones, readable in 24 h after virus inoculation. The infectivity titre of the virus by this plaque assay agreed well with tissue culture infectious dose(50) (TCID(50)) determinations. The described plaque assay would be a valuable tool in conducting various quantitative investigations using FCV as a model for NV and Norwalk-like viruses (NLV).
  8. Goh ZH, Tan SG, Bhassu S, Tan WS
    J. Virol. Methods, 2011 Jul;175(1):74-9.
    PMID: 21536072 DOI: 10.1016/j.jviromet.2011.04.021
    Macrobrachium rosenbergii nodavirus (MrNv) infects giant freshwater prawns and causes white tail disease (WTD). The coding region of the capsid protein of MrNv was amplified with RT-PCR and cloned into the pTrcHis2-TOPO vector. The recombinant plasmid was introduced into Escherichia coli and protein expression was induced with IPTG. SDS-PAGE showed that the recombinant protein containing the His-tag and myc epitope has a molecular mass of about 46 kDa and it was detected by the anti-His antibody in Western blotting. The protein was purified using immobilized metal affinity chromatography (IMAC) and transmission electron microscopic analysis revealed that the recombinant protein assembled into virus-like particles (VLPs) with a diameter of about 30±3 nm. The size of the particles was confirmed by dynamic light scattering. Nucleic acids were extracted from the VLPs and treatment with nucleases showed that they were mainly RNA molecules. This is the first report describing the production of MrNv capsid protein in bacteria and its assembly into VLPs.
  9. Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, et al.
    J. Virol. Methods, 2010 Feb;163(2):459-64.
    PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014
    Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
  10. Singh S, Chow VT, Chan KP, Ling AE, Poh CL
    J. Virol. Methods, 2000 Aug;88(2):193-204.
    PMID: 10960707
    A specific and sensitive method based on RT-PCR was developed to detect enterovirus 71 (EV71) from patients with hand, foot and mouth disease, myocarditis, aseptic meningitis and acute flaccid paralysis. RT-PCR primers from conserved parts of the VP1 capsid gene were designed on the basis of good correlation with sequences of EV71 strains. These primers successfully amplified 44 strains of EV71 including 34 strains isolated from Singapore in 1997 and 1998, eight strains from Malaysia isolated in 1997 and 1998, one Japanese strain and the neurovirulent strain EV71/7423/MS/87. RT-PCR of 30 strains of other enteroviruses including coxsackievirus A and B, and echoviruses failed to give any positive amplicons. Hence, RT-PCR with these primers showed 100% correlation with serotyping. Direct sequencing of the RT-PCR products of 20 EV71 strains revealed a distinct cluster with two major subgroups, thus enabling genetic typing of the viruses. The genetic heterogeneity of these strains culminated in amino acid substitutions within the VP1, VP2 and VP3 regions. The sequencing of a 2.9 kb fragment comprising the capsid region and the major part of 5' UTR of two Singapore strains revealed that they belonged to a group distinct from the prototype EV71/BrCr strain and the EV71/7423/MS/87 strain. The dendrogram generated from 341 bp fragments within the VP1 region revealed that the strains of Singapore, Malaysia and Taiwan belong to two entirely different EV71 genogroups, distinct from the three genogroups identified in another recent study.
  11. Bidawid S, Farber JM, Sattar SA
    J. Virol. Methods, 2000 Aug;88(2):175-85.
    PMID: 10960705
    Immunomagnetic beads-PCR (IM-PCR), positively-charged virosorb filters (F), or a combination of both methods (F-IM-PCR) were used to capture, concentrate and rapidly detect hepatitis A virus (HAV) in samples of lettuce and strawberries experimentally contaminated. Direct reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of the collected HAV-beads complex showed a detection limit of 0.5 plaque forming units (PFU) of the virus present in 1-ml of wash solution from the produce, which was several hundred-fold more sensitive than that demonstrated by RT-PCR. In separate trials, virus-containing wash solutions from the produce were passed through the filters and the captured virus was eluted with 10 ml volumes of 1% beef extract. Of the 62% filter-captured HAV, an average of 34.8% was eluted by the 1% beef extract. PCR amplification of 2 microl from this eluate failed to produce a clear positive band signal. As little as 10 PFU, present on each piece of the lettuce or strawberry, was detectable by the F-IM-PCR, which was almost 20 times less sensitive than the detection limit of 0.5 PFU by the IM-PCR. However, considering the large volumes (< or =50 ml) used in the F-IM-PCR, the sensitivity of detection could be much greater than that of the IM-PCR, which was restricted to < or =20 ml volumes. These data indicate that the F-IM-PCR method provides the potential for a greater sensitivity of detection than the IM-PCR, since low levels of virus could be detected from large volumes of sample than possible by the IM-PCR method. Although positively-charged filters captured a greater amount of virus than both the IM-PCR and F-IM-PCR methods, direct PCR amplification from beef extract eluates was not successful in detecting HAV from produce.
  12. Arivananthan M, Yadav M, Kumar S
    J. Virol. Methods, 1997 Jun;66(1):5-14.
    PMID: 9220385
    Human herpesvirus-6 exists in two forms, HHV-6A which has not been clearly associated with any disease, and HHV-6B, the causative agent of exanthem subitum. The two variants have been distinguished by techniques such as dot blotting and restriction fragment length polymorphism of PCR products. This study aims to establish the prevalence of HHV-6A and HHV-6B in carcinoma tissues using variant-specific oligonucleotide probes. A total of 73 archived carcinoma biopsies from the oral, salivary gland, larynx, breast and cervix were obtained with seven histologically normal controls. In situ hybridization was carried out with nonradioactively labelled variant-specific probes. Samples that hybridized with both variant A and B probes were subjected further to nested PCR and digested with HindIII to distinguish the variants. A hybridization signal was observed in 76.2% of oral carcinoma tissue and 75.0% of salivary gland carcinoma tissue. In contrast, only 33.3% of cervical carcinoma tissue were positive for HHV-6 DNA. A hybridization signal was noted in all 4 laryngeal carcinoma tissues studied. However, the 10 breast carcinoma tissues studied were negative, as was the histologically normal tissue. The virus possesses tumourigenic potential and demonstrates virus transactivating properties. The frequency of HHV-6 variants in certain tumours suggest a cofactorial role in multistep carcinogenesis. While PCR amplifies selectively the predominant variant in a sample, this was not seen by in situ hybridization. The in situ hybridization technique allowed the localization of both HHV-6A and HHV-6B in the nuclei of transformed regions.
  13. Kho CL, Mohd-Azmi ML, Arshad SS, Yusoff K
    J. Virol. Methods, 2000 Apr;86(1):71-83.
    PMID: 10713378
    A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
  14. Cheng HM, Foong YT, Mathew A, Sam CK, Dillner J, Prasad U
    J. Virol. Methods, 1993 Apr;42(1):45-51.
    PMID: 7686558
    An ELISA using the Epstein-Barr virus nuclear antigen 1 (EBNA 1) was found to detect selectively specific IgA in sera from patients with nasopharyngeal carcinoma (NPC). The antigen, p107, was a 20-amino acid synthetic peptide, representing a major epitope of EBNA 1.267/294 (90.8%) of NPC patients had IgA antibodies to p107 but in normal individuals, only 41/577 (7.1%) had IgA/p107. In sera from patients with other cancers, 11/77 (14.3%) had IgA/p107 reactivity. 124 IgA/VCA positive and 86 IgA/VCA negative NPC sera were also tested for IgA/p107 binding in ELISA. The majority of IgA/VCA positive sera (117) also contained IgA/p107 antibodies. Of interest was the detection of 74/86 IgA/p107 reactive sera in the IgA/VCA negative group. The results suggest that the IgA/p107 ELISA could become a useful, complementary screening assay to the IgA/VCA immunofluorescence test for detection of NPC.
  15. Yap KL, Lam SK
    J. Virol. Methods, 1994 Apr;47(1-2):217-26.
    PMID: 8051228
    A simple, rapid and objective infectivity assay based on an in situ enzyme immunoassay (EIA) was developed for the fast-growing and cytopathic cell culture-adapted hepatitis A virus (HAV) strain HM175A.2. Infectivity titration by EIA correlated well with titration by cytopathic effects. The reliability of this assay was demonstrated by close agreement in virus infectivity titers among different assays of the same virus aliquot and between assays of different virus aliquots. HAV infected cell cultures after fixation could be stored for up to 1 week before testing without decline in virus titer.
  16. Chan SY, Kautner IM, Lam SK
    J. Virol. Methods, 1994 Oct;49(3):315-22.
    PMID: 7868649
    The potential of RT-PCR to rapidly diagnose dengue infections from both acute and convalescent phase patients' sera was evaluated. The RNA extraction method involved binding of the viral RNA to silica particles in the presence of high concentration of guanidine thiocyanate. The protocol that was established was sensitive enough to detect 40 plaque forming units per 100 microliter of serum and results could be obtained within one day. Results from this study indicate that clinical samples should be collected in the early acute phase of illness when anti-dengue antibodies were undetectable or of low titres to ensure a more reliable diagnosis.
  17. Permeen AM, Sam CK, Pathmanathan R, Prasad U, Wolf H
    J. Virol. Methods, 1990 Mar;27(3):261-7.
    PMID: 2157729
    The presence of Epstein Barr virus (EBV) DNA in biopsies from the post-nasal space (PNS) of patients suspected of nasopharyngeal carcinoma (NPC) was detected by in situ cytohybridization with an EBV DNA probe labelled with the novel labelling compound digoxigenin. The digoxigenin probe was hybridised to cryostat sections of NPC biopsies and subsequently detected by an enzyme immunoassay procedure. It was found that in situ cytohybridization using the digoxigenin probe was much more rapid and sensitive (96 h compared to five weeks) than the current method of using 3H-labelled probe. Using the digoxigenin EBV probe, it was found that in all the eighteen NPC biopsies tested, EBV DNA was detected in malignant epithelial cells and infiltrating lymphocytes. EBV DNA was also detected in some normal epithelial cells in these NPC biopsies. EBV DNA was not detected in epithelial cells of non-malignant biopsies.
  18. Cardosa MJ, Hooi TP, Shaari NS
    J. Virol. Methods, 1988 Oct;22(1):81-8.
    PMID: 3058737
    Partially purified DEN3 virus was used as antigen in a sensitive dot enzyme immunoassay (DEIA) for the detection of antibodies to flavivirus antigens. We describe here the method used to prepare and optimise the antigen-bearing nitrocellulose membranes and present the results obtained from screening 20 acute phase sera from patients shown to have had recent dengue infections by the haemagglutination inhibition (HI) test. Sixteen pairs of acute and convalescent sera from dengue-negative patients had no detectable antibody to dengue virus by HI. These were shown to have no antibody detectable by DEIA. Sera positive for dengue antibodies by HI had DEIA titers ranging from 10 to several thousand times greater than the titers detected by HI.
  19. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J. Virol. Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
  20. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J. Virol. Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links