Displaying all 6 publications

Abstract:
Sort:
  1. Woon KL, Chong ZX, Ariffin A, Chan CS
    J Mol Graph Model, 2021 06;105:107891.
    PMID: 33765526 DOI: 10.1016/j.jmgm.2021.107891
    Fused tricyclic organic compounds are an important class of organic electronic materials. In designing molecules for organic electronics, knowing what chemical structure that be used to tune the molecular property is one of the keys that can help to improve the material performance. In this research, we applied machine learning and data analytic approaches in addressing this problem. The energy states (Lowest Unoccupied Molecular Orbital (HOMO), Highest Occupied Molecular Orbitals (LUMO), singlet (Es) and triplet (ET) energy) of more than 10 thousand fused tricyclics are calculated. Corresponding descriptors are also generated. We find that the Coulomb matrix is a poorer descriptor than high-level descriptors in a multilayer perceptron neural network. Correlations as high as 0.95 is obtained using a multilayer perceptron neural network with Mean Absolute Error as low as 0.08 eV. The descriptors that are important in tuning the energy levels are revealed using the Random Forest algorithm. Correlations of such descriptors are also plotted. We found that the higher the number of tertiary amines, the deeper are the HOMO and LUMO levels. The presence of NN in the aromatic rings can be used to tune the ES. However, there is no single dominant descriptor that can be correlated with the ET. A collection of descriptors is found to give a far better correlation with ET. This research demonstrated that machine learning and data analytics in guiding how certain chemical substructures correlate with the molecule energy states.
  2. Woon KL, Mustapa SAS, Mohd Jamel NS, Lee VS, Zakaria MZ, Ariffin A
    Chemphyschem, 2020 Sep 17.
    PMID: 32940952 DOI: 10.1002/cphc.202000612
    Material designs that use donor and acceptor units are often found in organic optoelectronic devices. Molecular level insight into the interactions between donors and acceptors are crucial for understanding how such interactions can modify the optical properties of the organic optoelectronic materials. In this paper, tris(4-(tert-butyl)phenyl)amine (pTPA) was synthesized as a donor in order to compare with unmodified triphenylamine (TPA) in a donor-acceptor system by having 2,4,6-triphenyl-1,3,5-triazine (TRZ) as an acceptor. Dimerization of donors and acceptors occurred in solvent when the concentration of solute is high. At 0 K, using a polarizable continuum model, the nitrogen atom of TPA is found to stack on top of the center of triazine of TRZ, whereas such alignment is offset in pTPA and TRZ. We attributed such alignment in TPA-TRZ as the result of attractive interactions between partial localization of 2pz electrons at the nitrogen atom of TPA and the π deficiency of triazine in TPA-TRZ. By taking into account random motions of the solvent effect at 300 K in quantum molecular dynamics and classical molecular dynamics simulations to interpret the marked difference in emission spectra between TPA-TRZ and pTPA-TRZ, it was revealed that the attractive interaction between pTPA and TRZ in toluene is weaker than TPA and TRZ. Because of the weaker attractive interaction between pTPA and TRZ in toluene, the dimers adopted numerous ground state conformations resulting in broad emission bands superimposed with multiple small Gaussian peaks. This is in contrast to TPA-TRZ which has only one dominant dimer conformation. This study demonstrates that the strength of intermolecular interactions between donors and acceptors should be taken into consideration in designing supramolecular structures.
  3. Woon KL, Yi CL, Pan KC, Etherington MK, Wu CC, Wong KT, et al.
    J Phys Chem C Nanomater Interfaces, 2019 May 16;123(19):12400-12410.
    PMID: 32952765 DOI: 10.1021/acs.jpcc.9b01900
    Understanding the excited-state dynamics and conformational relaxation in thermally activated delayed fluorescence (TADF) molecules, including conformations that potentially support intramolecular through-space charge transfer, can open new avenues for TADF molecular design as well as elucidate complex photophysical pathways in structurally complex molecules. Emissive molecules comprising a donor (triphenylamine, TPA) and an acceptor (triphenyltriazine, TRZ) bridged by a second donor (9,9-dimethyl-9-10-dihydroacridin, DMAC, or phenoxazine, PXZ) are synthesized and characterized. In solution, the flexibility of the sp3-hybridized carbon atom in DMAC of DMAC-TPA-TRZ, compared to the rigid PXZ, allows significant conformational reorganization, giving rise to multiple charge-transfer excited states. As a result of such a reorganization, the TRZ and TPA moieties become cofacially aligned, driven by a strong dipole-dipole attraction between the TPA and TRZ units, forming a weakly charge-transfer dimer state, in stark contrast to the case of PXZ-TPA-TRZ where the rigid PXZ bridge only supports a single PXZ-TRZ charge transfer (CT) state. The low-energy TPA-TRZ dimer is found to have a high-energy dimer local triplet state, which quenches delayed emission because the resultant singlet CT local triplet energy gap is too large to mediate efficient reverse intersystem crossing. However, organic light-emitting diodes using PXZ-TPA-TRZ as an emitting dopant resulted in external quantum efficiency as high as 22%, more than two times higher than that of DMAC-TPA-TRZ-based device, showing the impact that such intramolecular reorganization and donor-acceptor dimerization have on TADF performance.
  4. Whitcher TJ, Wong WS, Talik AN, Woon KL, Chanlek N, Nakajima H, et al.
    J Phys Condens Matter, 2016 09 14;28(36):365002.
    PMID: 27390863 DOI: 10.1088/0953-8984/28/36/365002
    The interfacial properties between electrodes and the various organic layers that comprise an organic electronic device are of direct relevance in understanding charge injection, extraction and generation. The energy levels and energy-bending of three interfaces; indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (

    PEDOT: PSS), ITO/poly(N-vinylcarbazole) (PVK) and

    PEDOT: PSS/PVK were measured using ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS). By decoupling the vacuum shift and energy-bending, the energy-bending at these interfaces can be simulated using an electrostatic model that takes into account the energetic disorder of the polymers. The model is further extended to include blended mixtures of semiconductors at differing concentrations and it was found that a very good agreement exists between the experiment and theory for all interfaces. This suggests that the electrostatic model can be used to describe energy-bending at the interface between any organic semiconductors. Further investigation into the effect of the Gaussian density of states width on energy-bending is warranted.

  5. Tang MS, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, et al.
    Nanotechnology, 2016 Aug 19;27(33):332002.
    PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002
    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
  6. Beh ZY, Au Yong PS, Lye S, Eapen SE, Yoong CS, Woon KL, et al.
    Indian J Anaesth, 2018 Oct;62(10):765-772.
    PMID: 30443059 DOI: 10.4103/ija.IJA_387_18
    Background and Aims: Continuous spinal anaesthesia (CSA) is an underutilised anaesthetic technique. Our objectives were to evaluate the use of CSA in our institution, its efficacy, ease to use and safety.

    Methods: This was a retrospective analysis conducted in a tertiary centre. Records of all patients who underwent surgery and received CSA between December 2008 and July 2017 were reviewed. Their demographic profiles, type and duration of surgery were analysed. The outcomes measured were the success of CSA, technical evaluation and difficulties encountered, intraoperative haemodynamics, usage of vasopressors and any reported complications. Statistical analysis was done using Chi-square test.

    Results: Three hundred and eighteen patients (94%) successfully underwent surgery using CSA. Twenty cases (6%) had failed CSA, of which five of them had CSA insertion failure, while the rest failed to complete the operation under CSA, thus requiring conversion to general anaesthesia. Patients who have had an initial intrathecal local anaesthetic (LA) volume ≥1.5 ml had higher odds (odds ratio (OR) 2.78; 95% confidence interval [CI], 1.70-4.57) of developing hypotension compared to those who had <1.5 ml (P < 0.001). There were no reported post-dural puncture headache, neurological sequelae or infection.

    Conclusion: CSA is a useful anaesthetic technique with low failure rate. The key to achieving haemodynamic stability is by giving a small initial bolus, then titrating the block up to required height using aliquots of 0.5 ml of intrathecal LA through the catheter.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links