Displaying all 5 publications

Abstract:
Sort:
  1. Yusof NS, Ashokkumar M
    Chemphyschem, 2015 Mar 16;16(4):775-81.
    PMID: 25598360 DOI: 10.1002/cphc.201402697
    The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high-intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au(3+) to Au(0) by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size- and shape-controlled metal nanoparticles.
  2. Woon KL, Mustapa SAS, Mohd Jamel NS, Lee VS, Zakaria MZ, Ariffin A
    Chemphyschem, 2020 Sep 17.
    PMID: 32940952 DOI: 10.1002/cphc.202000612
    Material designs that use donor and acceptor units are often found in organic optoelectronic devices. Molecular level insight into the interactions between donors and acceptors are crucial for understanding how such interactions can modify the optical properties of the organic optoelectronic materials. In this paper, tris(4-(tert-butyl)phenyl)amine (pTPA) was synthesized as a donor in order to compare with unmodified triphenylamine (TPA) in a donor-acceptor system by having 2,4,6-triphenyl-1,3,5-triazine (TRZ) as an acceptor. Dimerization of donors and acceptors occurred in solvent when the concentration of solute is high. At 0 K, using a polarizable continuum model, the nitrogen atom of TPA is found to stack on top of the center of triazine of TRZ, whereas such alignment is offset in pTPA and TRZ. We attributed such alignment in TPA-TRZ as the result of attractive interactions between partial localization of 2pz electrons at the nitrogen atom of TPA and the π deficiency of triazine in TPA-TRZ. By taking into account random motions of the solvent effect at 300 K in quantum molecular dynamics and classical molecular dynamics simulations to interpret the marked difference in emission spectra between TPA-TRZ and pTPA-TRZ, it was revealed that the attractive interaction between pTPA and TRZ in toluene is weaker than TPA and TRZ. Because of the weaker attractive interaction between pTPA and TRZ in toluene, the dimers adopted numerous ground state conformations resulting in broad emission bands superimposed with multiple small Gaussian peaks. This is in contrast to TPA-TRZ which has only one dominant dimer conformation. This study demonstrates that the strength of intermolecular interactions between donors and acceptors should be taken into consideration in designing supramolecular structures.
  3. Her Choong F, Keat Yap B
    Chemphyschem, 2021 03 03;22(5):493-498.
    PMID: 33377300 DOI: 10.1002/cphc.202000873
    Cell-penetrating peptides are used in the delivery of peptides and biologics, with some cell-penetrating peptides found to be more efficient than others. The exact mechanism of how they interact with the cell membrane and penetrate it, however, remains unclear. This study attempts to investigate the difference in free energy profiles of three cell-penetrating peptides (TAT, CPP1 and CPP9) with a model lipid bilayer (DOPC) using molecular dynamics pulling simulations with umbrella sampling. Potential mean force (PMF) and free energy barrier between the peptides and DOPC are determined using WHAM analysis and MM-PBSA analysis, respectively. CPP9 is found to have the smallest PMF value, followed by CPP1 and TAT, consistent with the experimental data. YDEGE peptide, however, does not give the highest PMF value, although it is a non-cell-permeable peptide. YDEGE is also found to form water pores, alongside with TAT and CPP9, suggesting that it is difficult to distinguish true water pore formation from artefacts arising from pulling simulations. On the contrary, free energy analysis of the peptide-DOPC complex at the lipid-water interface with MM-PBSA provides results consistent with experimental data with CPP9 having the least interaction with DOPC and lowest free energy barrier, followed by CPP1, TAT and YDEGE. These findings suggest that peptide-lipid interaction at the lipid-water interface has a direct correlation with the penetration efficiency of peptides across the lipid bilayer.
  4. Ul Haq B, Kim SH, Chaudhry AR, AlFaify S, Butt FK, Tahir SA, et al.
    Chemphyschem, 2024 Mar 22.
    PMID: 38517984 DOI: 10.1002/cphc.202300605
    The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the impact of surface functionalization on the behavior of Mn2NX2 (X = O, F) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We observe and elucidate the variations in the physical properties of the Mn2NX2 by employing different surface terminations with F and O functional groups. We found that O-termination results in half-metallic behavior, whereas the N-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light of magnitude 50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NX2-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links