Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities.