Displaying all 5 publications

Abstract:
Sort:
  1. Altan E, Nayman A, Yildirim A, Ozbaydar MU, Ciftci S, Karahan M
    Malays Orthop J, 2020 Jul;14(2):23-27.
    PMID: 32983374 DOI: 10.5704/MOJ.2007.007
    Introduction: Many factors could affect the supraspinatus (SSP) muscle after tendon rupture. We aimed to determine how infraspinatus and subscapularis tendon problems affect supraspinatus muscle atrophy associated with tears, in a retrospective cohort study conducted in a tertiary-level centre.

    Material and Methods: Fifty-eight patients with a full-thickness SSP tendon tear who fulfilled the inclusion criteria were enrolled in the study. They were evaluated for tear retraction, fatty degeneration, and other rotator cuff tendon pathologies. Supraspinatus muscle was assessed using the Goutallier classification, and its average area was also measured. Accompanying lesions of the subscapularis and infraspinatus tendons and degree of supraspinatus muscle atrophy were evaluated using magnetic resonance imaging.

    Results: Our results showed that supraspinatus tendon tears ranged between 3mm and 41mm, and the estimated average cross-sectional area of the SSP muscle was 247.6mm2. Any degree of infraspinatus tendon pathology, ranging from tendinosis to full-thickness tears, was significantly correlated with the SSP muscle area (P < 0.05). The subscapularis tendon pathologies did not show a similar correlation. The interobserver and intraobserver reliabilities of the measurements were graded as excellent.

    Conclusion: Impairment of any of the rotator cuff muscles may affect the other muscles inversely. Our study showed that all infraspinatus tendon pathologies and partial subscapularis tears affect and alter the SSP muscle belly. We suggest early intervention for supraspinatus tears to avoid further fatty degeneration, as muscle atrophy and fatty degeneration progress in combination with the accompanying lesions.

  2. Yildirim A, Lübbers HT, Yildirim V
    Swiss Dent J, 2016;126(1):40-1.
    PMID: 26797818
    Gutta-percha is a tough plastic substance from the latex of several Malaysian trees of the sapodilla family that resembles rubber but contains more resin. It is especially used as insulation and in dentistry. Gutta-percha endodontic filling points were found to contain approximately 20% gutta-percha (matrix), 66% zinc oxide (filler), 11% heavy metal sulphates (radiopacifier), and 3% waxes and/or resins (plasticiser). The mechanical properties were indicative of a partially crystalline viscoelastic polymeric material.
  3. Yildirim A, Lübbers HT, Yildirim V
    Swiss Dent J, 2016;126(2):150-1.
    PMID: 26915930
    Gutta-percha is a tough plastic substance from the latex of several Malaysian trees of the sapodilla family that resembles rubber but contains more resin. It is especially used as insulation and in dentistry. Gutta-percha endodontic filling points were found to contain approximately 20% gutta-percha (matrix), 66% zinc oxide (filler), 11% heavy metal sulphates (radiopacifier), and 3% waxes and/or resins (plasticiser). The mechanical properties were indicative of a partially crystalline viscoelastic polymeric material.
  4. Abuasad S, Yildirim A, Hashim I, Abdul Karim SA, Gómez-Aguilar JF
    PMID: 30889889 DOI: 10.3390/ijerph16060973
    In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.
  5. Aksu F, Topacoglu H, Arman C, Atac A, Tetik S, Hasanovic A, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:95-229.
    PMID: 27392492 DOI: 10.1007/BF03371486
    Conference abstracts: Malaysia in affiliation
    (1). PO-211. AGE-SPECIFIC STRESS-MODULATED
    CHANGES OF SPLENIC IMMUNOARCHITECTURE
    IN THE GROWING BODY. Marina Yurievna Kapitonova, Syed Baharom Syed Ahmad Fuad, Flossie Jayakaran; Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia
    syedbaharom@salam.uitm.edu.my
    (2). PO-213. A DETAILED OSTEOLOGICAL STUDY OF THE ANOMALOUS GROOVES NEAR THE
    MASTOID NOTCH OF THE SKULL. ISrijit Das, 2Normadiah Kassim, lAzian Latiff, IFarihah Suhaimi, INorzana Ghafar, lKhin Pa Pa Hlaing, lIsraa Maatoq, IFaizah Othman; I Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2 Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia. das_sri jit23@rediffmail.com
    (3). PO-21S. FIRST LUMBRICAL MUSCLE OF THE
    PALM: A DETAILED ANATOMICAL STUDY WITH
    CLINICAL IMPLICATIONS. Srijit Das, Azian Latiff, Parihah Suhaimi, Norzana Ghafar, Khin Pa Pa Hlaing, Israa Maatoq, Paizah Othman; Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. das_srijit23@rediffmail.com
    (4). PO-336. IMPROVEMENT IN EXPERIMENTALLY
    INDUCED INFRACTED CARDIAC FUNCTION
    FOLLOWING TRANSPLANTATION OF HUMAN
    UMBILICAL CORD MATRIX-DERIVED
    MESENCHYMAL CELLS. lSeyed Noureddin Nematollahi-Mahani, lMastafa Latifpour, 2Masood Deilami, 3Behzad Soroure-Azimzadeh, lSeyed
    Hasan Eftekharvaghefi, 4Fatemeh Nabipour, 5Hamid
    Najafipour, 6Nouzar Nakhaee, 7Mohammad Yaghoobi, 8Rana Eftekharvaghefi, 9Parvin Salehinejad, IOHasan Azizi; 1 Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran; 2 Department of Cardiosurgery, Hazrat-e Zahra Hospital, Kerman, Iran; 3 Department of Cardiology, Kerman University of Medical Sciences, Kerman, Iran; 4 Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran; 5 Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran; 6 Department of Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; 7 Department
    of Biotechnology, Research Institute of Environmental Science, International Center for Science, High Technology & Environmental Science, Kerman, Iran; 8 Students Research Center, Kerman University of Medical Sciences, Kerman, Iran; 9 Institute of Bioscience, University Putra Malaysia,
    Kuala Lumpur, Malaysia; 10 Department of Stem Cell, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran. nnematollahi@kmu.ac.ir
    (5).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links