Displaying all 2 publications

Abstract:
Sort:
  1. Arof AK, Amirudin S, Yusof SZ, Noor IM
    Phys Chem Chem Phys, 2014 Feb 7;16(5):1856-67.
    PMID: 24326909 DOI: 10.1039/c3cp53830c
    In this work, we introduce a method based on impedance spectroscopy and the equations developed to evaluate, with a good degree of accuracy, the number density, mobility and diffusion coefficient of mobile ions. Nyquist plots of electrolytes based on poly(acrylonitrile) or PAN and methyl cellulose (MC) incorporated with lithium bis(oxalato)borate have been established from impedance measurements. Equivalent circuits based on a resistor and "leaky capacitor(s)" have been determined and the relevant impedance equations derived. The values of the parameters required in the equation are obtained from the Nyquist plots and the parameters that cannot be obtained from the respective plots have been obtained by trial and error in order to fit the Nyquist plots. The transport parameters are calculated using the developed equations and the results have been compared with those obtained from the broadband dielectric response (BDR) method. Finally, Fourier transform infrared (FTIR) spectroscopy has been used to verify the results obtained from the two approaches at room and elevated temperatures.
  2. Fadil NA, Yusof SZ, Abu Bakar TA, Ghazali H, Mat Yajid MA, Osman SA, et al.
    Materials (Basel), 2021 Nov 11;14(22).
    PMID: 34832218 DOI: 10.3390/ma14226817
    Since the use of the most stable Pb-based materials in the electronic industry has been banned due to human health concerns, numerous research studies have focused on Pb-free materials such as pure tin and its alloys for electronic applications. Pure tin, however, suffers from tin whiskers' formation, which tends to endanger the efficiency of electronic circuits, and even worse, may cause short circuits to the electronic components. This research aims to investigate the effects of stress on tin whiskers' formation and growth and the mitigation method for the immersion of the tin surface's finish deposited on a copper substrate. The coated surface was subjected to external stress by micro-hardness indenters with a 2N load in order to simulate external stress applied to the coating layer, prior to storage in the humidity chamber with environmental conditions of 30 °C/60% RH up to 52 weeks. A nickel underlayer was deposited between the tin surface finish and copper substrate to mitigate the formation and growth of tin whiskers. FESEM was used to observe the whiskers and EDX was used for measuring the chemical composition of the surface finish, tin whiskers, and oxides formed after a certain period of storage. An image analyzer was used to measure the whiskers' length using the JEDEC Standard (JESD22-A121A). The results showed that the tin whiskers increased directly proportional to the storage time, and they formed and grew longer on the thicker tin coating (2.3 μm) than the thin coating (1.5 μm). This is due to greater internal stress being generated by the thicker intermetallic compounds identified as the Cu5Sn6 phase, formed on a thicker tin coating. In addition, the formation and growth of CuO flowers on the 1.5 μm-thick tin coating suppressed the growth of tin whiskers. However, the addition of external stress by an indentation on the tin coating surface showed that the tin whiskers' growth discontinued after week 4 in the indented area. Instead, the whiskers that formed were greater and longer at a distance farther from the indented area due to Sn atom migration from a high stress concentration to a lower stress concentration. Nonetheless, the length of the whisker for the indented surface was shorter than the non-indented surface because the whiskers' growth was suppressed by the formation of CuO flowers. On the other hand, a nickel underlayer successfully mitigated the formation of tin whiskers upon the immersion of a tin surface finish.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links