Displaying all 5 publications

Abstract:
Sort:
  1. Rodde C, Vandeputte M, Trinh TQ, Douchet V, Canonne M, Benzie JAH, et al.
    Front Genet, 2020;11:596521.
    PMID: 33519898 DOI: 10.3389/fgene.2020.596521
    Accurately measuring the phenotype at the individual level is critical to the success of selective breeding programs. Feed efficiency is a key sustainability trait and is typically approached through feed conversion ratio (FCR). This requires measurements of body weight gain (BWG) and feed intake (FI), the latter being technically challenging in fish. We assessed two of the principal methods for measuring feed intake in fish over consecutive days: (1) group rearing 10 fish per group and video recording the meals and (2) rearing fish individually on a restricted ration. Juvenile Nile tilapia (Oreochromis niloticus) from the Genetically Improved Farmed Tilapia (GIFT) strain and the Cirad strain were entered into the study (128 GIFT and 109 Cirad). The GIFT strain were reared over three consecutive periods of 7 days each under different feeding, recording, and rearing scenarios (i) in groups fed an optimal ration (g100) or (ii) fed a 50% restricted ration (g50) both with video records of all meals and (iii) reared in isolation and fed a 50% restrictive ration. The Cirad strain were tested similarly but only for scenarios (i) and (iii). All fish were fed twice daily with a calculated ration. Correlations showed the same trends for the GIFT and the Cirad strains. For the GIFT strain, correlations were positive and significant for BWG and FI measured in scenarios (i) and (ii), 0.49 and 0.63, respectively, and FI measured in scenarios (i) and (iii) (0.50) but not for BWG measured in scenarios (i) and (iii) (0.29, NS). The phenotypic correlation estimated for FCR between scenarios (i) and (ii) with fish fed an optimal or a 50% restricted ration was low and not significant (0.22). Feed Conversion Ratio for GIFT fish reared in groups or in isolation and fed with a restricted ration [scenarios (ii) and (iii)] were not significantly correlated either. Social interactions between fish, potentially impacting their efficiency, may explain the results. Therefore, selective breeding programs seeking to improve feed efficiency will need to carefully plan the feeding rate and the rearing system used to estimate FCR in order to optimize selection for the targeted production system.
  2. de Verdal H, Vandeputte M, Mekkawy W, Chatain B, Benzie JAH
    BMC Genet, 2018 11 16;19(1):105.
    PMID: 30445908 DOI: 10.1186/s12863-018-0691-y
    BACKGROUND: Improving feed efficiency in fish is crucial at the economic, social and environmental levels with respect to developing a more sustainable aquaculture. The important contribution of genetic improvement to achieve this goal has been hampered by the lack of accurate basic information on the genetic parameters of feed efficiency in fish. We used video assessment of feed intake on individual fish reared in groups to estimate the genetic parameters of six growth traits, feed intake, feed conversion ratio (FCR) and residual feed intake in 40 pedigreed families of the GIFT strain of Nile tilapia, Oreochromis niloticus. Feed intake and growth were measured on juvenile fish (22.4 g mean body weight) during 13 consecutive meals, representing 7 days of measurements. We used these data to estimate the FCR response to different selection criteria to assess the potential of genetics as a means of increasing FCR in tilapia.

    RESULTS: Our results demonstrate genetic control for FCR in tilapia, with a heritability estimate of 0.32 ± 0.11. Response to selection estimates showed FCR could be efficiently improved by selective breeding. Due to low genetic correlations, selection for growth traits would not improve FCR. However, weight loss at fasting has a high genetic correlation with FCR (0.80 ± 0.25) and a moderate heritability (0.23), and could be an easy to measure and efficient criterion to improve FCR by selective breeding in tilapia.

    CONCLUSION: At this age, FCR is genetically determined in Nile tilapia. A selective breeding program could be possible and could help enabling the development of a more sustainable aquaculture production.

  3. Barría A, Benzie JAH, Houston RD, De Koning DJ, de Verdal H
    Front Genet, 2021;12:737906.
    PMID: 34616434 DOI: 10.3389/fgene.2021.737906
    Nile tilapia is a key aquaculture species with one of the highest production volumes globally. Genetic improvement of feed efficiency via selective breeding is an important goal, and genomic selection may expedite this process. The aims of this study were to 1) dissect the genetic architecture of feed-efficiency traits in a Nile tilapia breeding population, 2) map the genomic regions associated with these traits and identify candidate genes, 3) evaluate the accuracy of breeding value prediction using genomic data, and 4) assess the impact of the genetic marker density on genomic prediction accuracies. Using an experimental video recording trial, feed conversion ratio (FCR), body weight gain (BWG), residual feed intake (RFI) and feed intake (FI) traits were recorded in 40 full-sibling families from the GIFT (Genetically Improved Farmed Tilapia) Nile tilapia breeding population. Fish were genotyped with a ThermoFisher Axiom 65 K Nile tilapia SNP array. Significant heritabilities, ranging from 0.12 to 0.22, were estimated for all the assessed traits using the genomic relationship matrix. A negative but favourable genetic correlation was found between BWG and the feed-efficiency related traits; -0.60 and -0.63 for FCR and RFI, respectively. While the genome-wide association analyses suggested a polygenic genetic architecture for all the measured traits, there were significant QTL identified for BWG and FI on chromosomes seven and five respectively. Candidate genes previously found to be associated with feed-efficiency traits were located in these QTL regions, including ntrk3a, ghrh and eif4e3. The accuracy of breeding value prediction using the genomic data was up to 34% higher than using pedigree records. A SNP density of approximately 5,000 SNPs was sufficient to achieve similar prediction accuracy as the full genotype data set. Our results highlight the potential of genomic selection to improve feed efficiency traits in Nile tilapia breeding programmes.
  4. Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, et al.
    BMC Genet, 2020 04 29;21(1):49.
    PMID: 32349678 DOI: 10.1186/s12863-020-00853-3
    BACKGROUND: Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The 'genetically improved farmed tilapia' (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins.

    RESULTS: A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284).

    CONCLUSIONS: Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.

  5. Rodde C, de Verdal H, Vandeputte M, Allal F, Nati J, Besson M, et al.
    J Anim Sci, 2021 Jun 01;99(6).
    PMID: 33966070 DOI: 10.1093/jas/skab152
    Feed efficiency (FE) is the amount of body weight gain for a given feed intake. Improving FE through selective breeding is key for sustainable finfish aquaculture but its evaluation at individual level is technically challenging. We therefore investigated whether individual routine metabolic rate (RMR) was a predictor of individual FE in the European sea bass Dicentrarchus labrax, a major species in European mariculture. The European sea bass has three genetically distinct populations across its geographical range, namely Atlantic (AT), West Mediterranean (WM), and East Mediterranean (EM). We compared FE and RMR of fish from these three populations at 18 or 24 °C. We held 200 fish (62 AT, 66 WM, and 72 EM) in individual aquaria and fed them from ad libitum down to fasting. FI was assessed for an ad libitum feeding rate and for a fixed restricted ration (1% of metabolic body weight·day-1, with metabolic body weight = body weight0.8). After being refed 12 wk in a common tank, individual RMR was measured over 36 h by intermittent flow respirometry. There was a significant effect of temperature whereby fish at 18 °C had greater mean FE (P < 0.05) and lower RMR (P < 0.001). There was also a significant effect of population, where AT fish had lower FE (P < 0.05) and greater RMR (P < 0.001) than WM and EM, at both temperatures. Despite these differences in temperature and population means, individual FE and RMR were not significantly correlated (P > 0.05). Therefore, although the results provide evidence of an association between metabolic rate and FE, RMR was not a predictor of individual FE, for reasons that require further investigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links