Displaying all 18 publications

Abstract:
Sort:
  1. Siddiquee S, Shafawati SN, Naher L
    Biotechnol Rep (Amst), 2017 Mar;13:1-7.
    PMID: 28352555 DOI: 10.1016/j.btre.2016.11.001
    Oil palm fibres are easy to degrade, eco-friendly in nature and once composted, they can be categorized under nutrient-enriched biocompost. Biocompost is not only a good biofertilizer but also a good biocontrol agent against soil-borne pathogens. In this research, experimental works on the composting of empty fruit bunches (EFB) from the oil palm industry were conducted using two potential Trichoderma strains. Analysis of pH initially found the soils to be slightly acidic. However, after composting, the soils were found to be alkaline. Trichoderma propagules increased by 72% in the soils compared to other fungi. Soil electrical conductivity was found to be 50.40 μS/cm for compost A, 42.10 μS/cm for compost B and 40.11 μS/cm for the control. The highest C:N ratio was obtained for compost A at 3.33, followed by compost B at 2.79, and then the control at 1.55. The highest percentages of nitrogen (N), phosphorus (P), and potassium (K) were found in compost A (0.91:2.13:6.68), which was followed by compost B (0.46:0.83:5.85) and then the control (0.32:0.26:5.76). Thus, the biocomposting of oil palm fibres shows great potential for enhancing soil micronutrient, plant growth performance, and crop yield production.
  2. Wan-Mohtar WA, Ab Kadir S, Saari N
    Biotechnol Rep (Amst), 2016 Sep;11:2-11.
    PMID: 28352534 DOI: 10.1016/j.btre.2016.05.005
    The morphology of Ganoderma lucidum BCCM 31549 mycelium in a repeated-batch fermentation (RBF) was studied for exopolysaccharide (EPS) production. RBF was optimised for time to replace and volume to replace. G. lucidum mycelium showed the ability to self-immobilise and exhibited high stability for repeated use in RBF with engulfed pellets. Furthermore, the ovoid and starburst-like pellet morphology was disposed to EPS production in the shake flask and bioreactor, respectively. Seven RBF could be carried out in 500 mL flasks, and five repeated batches were performed in a 2 L bioreactor. Under RBF conditions, autolysis of pellet core in the shake flask and shaving off of the outer hairy region in the bioreactor were observed at the later stages of RBF (R4 for the shake flask and R6 for the bioreactor). The proposed strategy showed that the morphology of G. lucidum mycelium can withstand extended fermentation cycles.
  3. Saallah S, Naim MN, Lenggoro IW, Mokhtar MN, Abu Bakar NF, Gen M
    Biotechnol Rep (Amst), 2016 Jun;10:44-48.
    PMID: 28352523 DOI: 10.1016/j.btre.2016.03.003
    Immobilisation of cyclodextrin glucanotransferase (CGTase) on nanofibres was demonstrated. CGTase solution (1% v/v) and PVA (8 wt%) solution were mixed followed by electrospinning (-9 kV, 3 h). CGTase/PVA nanofibres with an average diameter of 176 ± 46 nm were successfully produced. The nanofibres that consist of immobilised CGTase were crosslinked with glutaraldehyde vapour. A CGTase/PVA film made up from the same mixture and treated the same way was used as a control experiment. The immobilised CGTase on nanofibres showed superior performance with nearly a 2.5 fold higher enzyme loading and 31% higher enzyme activity in comparison with the film.
  4. Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, et al.
    Biotechnol Rep (Amst), 2019 Mar;21:e00296.
    PMID: 30581767 DOI: 10.1016/j.btre.2018.e00296
    In this study, anti-proliferative effects of C. calcitrans extract and its fucoxanthin rich fraction (FxRF) were assessed on human liver HepG2 cancer cell line. Efficacy from each extract was determined by cytotoxicity assay, morphological observation, and cell cycle analysis. Mechanisms of action observed were evaluated using multiplex gene expression analysis. Results showed that CME and FxRF induced cytotoxicity to HepG2 cells in a dose and time-dependent manner. FxRF (IC50: 18.89 μg.mL-1) was found to be significantly more potent than CME (IC50: 87.5 μg.mL-1) (p 
  5. Zadeh-Ardabili PM, Rad SK
    Biotechnol Rep (Amst), 2019 Jun;22:e00341.
    PMID: 31061816 DOI: 10.1016/j.btre.2019.e00341
    Although inflammation is a reactive to injurious stimuli and considered as beneficial process in body, but it causes some discomforts, such as pain. Murine dietary contains appreciable amounts of fatty acids and antioxidants which encourages researchers to focus on their potential therapeutic effects. This study is aimed to examine the analgesic and anti-inflammatory activity of Neptune krill oil (NKO) and fish oil (FO) in rodent model which are two well-known sources of rich content of n-3 polyunsaturated fatty acids (n-3 PUFAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). NKO and FO were used at the same dose of 500 mg and also balanced at similar doses of EPA: 12 in NKO vs. 12 in FO wt%, DHA: 7 NKO vs. 8 FO wt%. Application of NKO and FO in acetic acid-induced writhing effect, hot plate, and formalin induced test, indicated the nociceptive activity of the two tested drugs in comparison with normal saline. Also, the anti-inflammatory effect of these supplements was confirmed by carrageenan test. Analysis of cytokines levels in the blood samples of the mice after induction inflammation by carrageenan indicated decreased levels of those proteins compared to that in the normal groups. Both tested drugs, effectively could reduce severe inflammation and pain in rodents in comparison with the references drugs (depends on the tests); however, NKO was found to be more effective.
  6. Cheng TH, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M
    Biotechnol Rep (Amst), 2020 Sep;27:e00482.
    PMID: 32514406 DOI: 10.1016/j.btre.2020.e00482
    Industrial enzymes are important for various biotechnological applications. Currently, the diversity of industrial enzymes-producing marine bacteria from Malaysia remains mostly unknown. This study investigated the diversity of industrial enzyme-producing marine bacteria from culture collections at the Institute of Marine Biotechnology, Universiti Malaysia Terengganu. Out of 200 bacterial isolates revived, 163 bacteria isolate were successfully growth. Marine bacteria produced enzymes with total scoring higher than four were selected for molecular identification using 16S rDNA. About 161 bacteria isolate secreted amylase (68.7 %), lipase (88.3 %) and protease (68.7 %). The phylogenetic analysis led to the identification of three major phyla, namely Proteobacteria, Firmicutes and Bacteroidetes. These phyla were differentiated into nine genera consisted of Bacillus, Chryseomicrobium, Photobacterium, Pseudoalteromonas, Ruegeria, Shewanella, Solibacillus, Tenacibaculum and Vibrio. Genetic variation was more likely to occur within similar marine bacteria species. The microbial community was found to affect the production of industrial enzymes and the diversity of marine bacteria.
  7. Najjar-Tabrizi R, Javadi A, Sharifan A, Chew KW, Lay CH, Show PL, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00507.
    PMID: 32775231 DOI: 10.1016/j.btre.2020.e00507
    Saponin was extracted from Acanthophyllum glandulosum root under subcritical water conditions, and effects of root powder and pH of the solution were evaluated on the concentration of the saponin as manifested in its foamability and antioxidant activity using RSM. FT-IR analysis indicated that A. glandulosum root extract had 2 main functional groups (hydroxyl and amide I groups). Saponin with the highest foam height (4.66 cm), concentration (0.080 ppm) and antioxidant activity (90.6 %) was extracted using 10 g of the root powder and pH value of 4. Non-significant differences were observed between the predicted and experimental values of the extraction response variables. The study demonstrated good appropriateness of resulted models by Response Surface Methodology. Furthermore, higher values of R2 was attained for the foamability (>0.81) and antioxidant activity (>0.97), as well as large p-values (p > 0.05) indication of their lack-of-fit response verified the acceptable fitness of the provided models. The extracted saponin also showed bactericidal effect, which shows potential as a natural antibacterial compound.
  8. Tharek A, Yahya A, Salleh MM, Jamaluddin H, Yoshizaki S, Hara H, et al.
    Biotechnol Rep (Amst), 2021 Dec;32:e00673.
    PMID: 34621628 DOI: 10.1016/j.btre.2021.e00673
    Natural astaxanthin is known to be produced by green microalgae, a potent producer of the most powerful antioxidant. To increase the productivity of astaxanthin in microalgae, random mutagenesis has been extensively used to improve the yield of valuable substances. In the presented work, a newly isolated Coelastrum sp. was randomly mutagenized by exposure to ethyl methane sulfonate and further screened using two approaches; an approach for high growth mutant and an approach for high astaxanthin producing mutant with a high-throughput screening method using glufosinate. Among these, mutant G1-C1 that was selected using glufosinate showed the highest of total carotenoids (45.48±1.5 mg/L) and astaxanthin (28.32±2.5 mg/L) production, which was almost 2-fold higher than that of wild type. This study indicates that random mutagenesis via chemical mutation strategy and screening using glufosinate successfully expedited astaxanthin production in a mutated strain of a Coelastrum sp.
  9. Elumalai K, Ali MA, Elumalai M, Eluri K, Srinivasan S
    Biotechnol Rep (Amst), 2015 Mar;5:1-6.
    PMID: 28626677 DOI: 10.1016/j.btre.2014.10.007
    A new series of some novel pyrazinamide condensed 1,2,3,4-tetrahydropyrimidines was prepared by reacting of N-(3-oxobutanoyl)pyrazine-2-carboxamide with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of laboratory made p-toluenesulfonic acid as an efficient catalyst. Confirmation of the chemical structure of the synthesized compounds (4a-l) was substantiated by TLC, different spectral data IR, 1H NMR, mass spectra and elemental analysis. The synthesized compounds were evaluated for acetyl and butyl cholinesterase (AChE and BuChE) inhibitor activity. The titled compounds exhibited weak, moderate or high AChE and BuChE inhibitor activity. Especially, compound (4l) showed the best AChE and BuChE inhibitory activity of all the 1,2,3,4-tetrahydropyrimidine derivatives, with an IC50 value of 0.11 μM and 3.4 μM.
  10. Nurul ANA, Muhammad DD, Okomoda VT, Nur AAB
    Biotechnol Rep (Amst), 2019 Mar;21:e00303.
    PMID: 30671359 DOI: 10.1016/j.btre.2019.e00303
    This study was designed to evaluate the bacterial composition of the Labroides dimidiatus and its surrounding water. Fish and carriage water samples were obtained from corals of the Karah Island in Terengganu Malaysia. DNA was extracted and the bacteria communities on the skin mucus and stomach as well as water sample were classified (to family level) using the 16S rRNA-based metagenomics analysis. 1,426,740 amplicon sequence reads corresponding to 508 total operational taxonomic units were obtained from the three metagenomics libraries in this study. The Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Fusobacteria were the most dominant bacterial phyla in all samples. A total of 36 different classes and 132 families were identified, many of which had shared presence in all samples while others were exclusive to different sample. Thirty-three of these were identified as pathogenic zoonotic bacterial. The results obtained indicate a strong influence of host environment on the composition of its microbiota. Knowing the composition of the microbiota is the first step toward exploring proper management of this ornamental fish in captivity.
  11. Krishnan S, Suzana BN, Wahid ZA, Nasrullah M, Abdul Munaim MS, Din MFBM, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00498.
    PMID: 32670809 DOI: 10.1016/j.btre.2020.e00498
    The application of the xylose reductase (XR) enzyme in the development of biotechnology demands an efficient and large scale enzyme separation technique. The aim of this present work was to optimize xylose reductase (XR) purification process through ultrafiltration membrane (UF) technology using Central composite design (CCD) of response surface methods (RSM). The three effective parameters analyzed were filtration time (0-100), transmembrane pressure (TMP) (1-1.6 bar), cross flow velocity (CFV) (0.52-1.2 cm/s-1) and its combined effect to obtain high flux with less possibility of membrane fouling. Experimental studies revealed that the best range for optimization process for filtration time, operational transmembrane pressure and cross flow velocity was 30 min, 1.4 bars and 1.06 cm/s, respectively as these conditions yielded the highest membrane permeability (56.03 Lm-2h-1 bar-1) and xylitol content (15.49 g/l). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. The error percentage between the actual and predicted value for membrane permeability and xylitol amount (2.21 % and 4.85 % respectively), which both were found to be close to the predicted values. The verification experiments gave membrane actual permeability of 57.3 Lm-2h-1 bar-1 and 16.29 g/l of xylitol production, thus indicating that the successfully developed model to predict the response.
  12. Kotakadi SM, Bangarupeta MJ, Kandati K, Borelli DPR, Sayyed JA, Shaik MI, et al.
    Biotechnol Rep (Amst), 2024 Sep;43:e00846.
    PMID: 39034969 DOI: 10.1016/j.btre.2024.e00846
    The present study investigates S. cumini seed extracts which are considered as a promising and valuable source of bioactive compounds were prepared using different solvents such as methanol, ethanol, petroleum ether, acetone, chloroform, and diethyl ether. Among these solvents, methanol exhibited the highest extraction with a yield of 42 %. HPLC analysis revealed the highest concentration of quercetin flavonoids (49.62 mg/gm) in the methanolic S. cumini seed extract. Thus, the current work deals with the MgONPs synthesis through a biological approach using different S. cumini seed extracts. In vitro anti-oxidant properties were evaluated, which showed an IC50 value of 22.46 μg/mL for MgONPs synthesized from methanolic extract, surpassing the anti-oxidant potency of ascorbic acid by threefold. By leveraging the rich repository of bioactive compounds found within S. cumini seed extract, this study presents a novel approach to MgONPs synthesis. Exploring the symbiotic relationship between S. cumini seed extract and MgONPs, this research elucidates the pivotal role of bioactive compounds in guiding the formation and properties of nanostructures. Further anti-microbial studies on MgONPs from methanolic S. cumini seed extract were conducted against four different bacterial strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and S. typhimurium), revealing potent anti-microbial activity with 5.3 mm of inhibition for 100 µl against S. typhimurium. These findings suggest that S. cumini is a source of bioactive compounds responsible for the successful synthesis of MgONPs. Characterization studies of MgONPs were also carried out using UV-vis spectroscopy, FTIR, SEM, XRD, DSC and HPLC.
  13. Rasool A, Zulfajri M, Gulzar A, Hanafiah MM, Unnisa SA, Mahboob M
    Biotechnol Rep (Amst), 2020 Jun;26:e00453.
    PMID: 32368512 DOI: 10.1016/j.btre.2020.e00453
    Cobalt nanoparticles (Co-NPs) have been extensively used in clinical practices and medical diagnosis. In this study, the potential toxicity effects of Co-NPs with special emphasis over the biochemical enzyme activities, such as aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) in serum, liver, and kidney of Wistar rats were investigated. This toxicity measurement of nanomaterials can support the toxicological data. The biochemical enzymatic variations are powerful tools for the assessment of toxicity. ASAT and ALAT enzymes have been widely used to predict tissue-specific toxicities associated with xenobiotic. The biochemical changes induced by Co-NPs have significance in their toxicological studies because the alterations in biochemical parameters before clinical symptoms indicate either their toxicant safety or detrimental effect. Herein, Co-NPs with particle size <50 nm significantly activated ASAT and ALAT enzymes in the serum, liver, and kidney of rats at concentration-dependent order.
  14. Khor SP, Yeow LC, Poobathy R, Zakaria R, Chew BL, Subramaniam S
    Biotechnol Rep (Amst), 2020 Jun;26:e00448.
    PMID: 32368510 DOI: 10.1016/j.btre.2020.e00448
    A droplet-vitrification cryopreservation protocol has been successfully developed for Aranda Broga Blue orchid hybrid using protocorm-like bodies (PLBs). However, maximum growth regeneration percentage was recorded at 5% only based on previous report. Thus, to improve growth recovery of cryopreserved PLBs, cryopreservation stages were supplemented with ascorbic acid, tested at 50, 100 and 150 mg/L. However, results demonstrated that exogenous ascorbic acid was not favorable in regeneration of cryopreserved explants (maximum value of 1.67 % with 50 mg/L ascorbic acid supplementation). Total soluble protein and various antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) were evaluated after each cryopreservation stages in conjunction with the application of exogenous ascorbic acid. Addition of antioxidant must be carefully evaluated and its application may not guarantee successful growth recovery. RAPD and SCoT molecular analysis confirmed the genetic stability of regenerated cryopreserved PLBs as no polymorphism was detected compared to control PLBs culture.
  15. Mawang CI, Azman AS, Fuad AM, Ahamad M
    Biotechnol Rep (Amst), 2021 Dec;32:e00679.
    PMID: 34660214 DOI: 10.1016/j.btre.2021.e00679
    Over the past two decades, various eco-friendly approaches utilizing microbial species to clean up contaminated environments have surfaced. In this aspect, actinobacteria have demonstrated their potential in contaminant degradation. The members of actinobacteria phylum exhibits a cosmopolitan distribution, which means that they can be found widely in both aquatic and terrestrial ecosystems. Actinobacteria play important ecological roles in the environment, such as degrading complex polymers, recycling compounds, and producing bioactive molecules. Hence, using actinobacteria to clean up contaminants is an attractive method in the field of biotechnology. This can be achieved through the green technology of bioaugmentation, whereby the degradative capacity of contaminated areas can be greatly improved through the introduction of specific microorganisms. This review describes actinobacteria as an eco-friendly and a promising technology for the bioaugmentation of contaminants, with focus on pesticides and heavy metals.
  16. Yeow LC, Chew BL, Sreeramanan S
    Biotechnol Rep (Amst), 2020 Sep;27:e00497.
    PMID: 32695616 DOI: 10.1016/j.btre.2020.e00497
    Gas-chromatography-mass-spectrometry revealed the presence of various bioactive compounds with anticancer properties in protocorm-like-body (PLB) cultures of a Dendrobium hybrid orchid (Dendrobium Enopi x Dendrobium Pink Lady). Pre-illumination of red fluorescent light lessened the stimulating effects of light-emitting diodes (LEDs) on secondary metabolites production among in vitro PLB cultures, possibly due to habituation. The highest flavonoid content of 16.79 μmol/ g of fresh weight (FW) was achieved under blue-red (1:1) LED for PLBs pre-treated with white LED for more than 3 subculture cycles. Phenolics content significantly reduced as PLBs pre-cultured under red fluorescent light for 2 subculture cycles were exposed to LED illuminations, where far red LED resulted in the lowest total phenolic content (18.85 μmol/ g FW). High intensity green LED (16.9 μmol/s) enhanced the accumulation of phenolics while amino acids such as L-leucine, glycine and proline exhibited no significant stimulating effect for secondary metabolites production.
  17. Nur MMA, Mahreni, Murni SW, Setyoningrum TM, Hadi F, Widayati TW, et al.
    Biotechnol Rep (Amst), 2025 Mar;45:e00870.
    PMID: 39758973 DOI: 10.1016/j.btre.2024.e00870
    The increasing need for sustainable agricultural practices due to the overuse of chemical fertilizers has prompted interest in microalgae as biofertilizers. This review investigates the potential of microalgae as biofertilizers and phycoremediators within sustainable agroecosystems, addressing both soil fertility and wastewater management. Microalgae provide a dual benefit by absorbing excess nutrients and contaminants from wastewater, generating nutrient-rich biomass that can replace chemical fertilizers and support plant growth. Implementation strategies include cultivating microalgae in wastewater to offset production costs, using closed photobioreactor systems to enhance growth efficiency, and applying microalgal biomass directly to soil or crops. Additionally, microalgae extracts provide essential bioactive compounds, such as phytohormones and amino acids, that enhance plant growth and resilience. While microalgae offer an eco-friendly solution for nutrient recycling and crop productivity, challenges in scalability, production cost, and regulatory frameworks hinder widespread adoption. This review highlights the potential pathways and technological advancements necessary for integrating microalgae into sustainable agriculture, emphasizing the need for interdisciplinary collaboration and innovative approaches to overcome these barriers. Ultimately, microalgae biofertilizers represent a promising approach to reducing environmental impact and advancing sustainable farming practices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links