Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Juhari WKW, Ahmad Amin Noordin KB, Zakaria AD, Rahman WFWA, Mokhter WMMWM, Hassan MRA, et al.
    Genes (Basel), 2021 09 20;12(9).
    PMID: 34573430 DOI: 10.3390/genes12091448
    BACKGROUND: This study aimed to identify new genes associated with CRC in patients with normal mismatch repair (MMR) protein expression.

    METHOD: Whole-genome sequencing (WGS) was performed in seven early-age-onset Malay CRC patients. Potential germline genetic variants, including single-nucleotide variations and insertions and deletions (indels), were prioritized using functional and predictive algorithms.

    RESULTS: An average of 3.2 million single-nucleotide variations (SNVs) and over 800 indels were identified. Three potential candidate variants in three genes-IFNE, PTCH2 and SEMA3D-which were predicted to affect protein function, were identified in three Malay CRC patients. In addition, 19 candidate genes-ANKDD1B, CENPM, CLDN5, MAGEB16, MAP3K14, MOB3C, MS4A12, MUC19, OR2L8, OR51Q1, OR51AR1, PDE4DIP, PKD1L3, PRIM2, PRM3, SEC22B, TPTE, USP29 and ZNF117-harbouring nonsense variants were prioritised. These genes are suggested to play a role in cancer predisposition and to be associated with cancer risk. Pathway enrichment analysis indicated significant enrichment in the olfactory signalling pathway.

    CONCLUSION: This study provides a new spectrum of insights into the potential genes, variants and pathways associated with CRC in Malay patients.

  2. Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY
    Genes (Basel), 2018 Nov 07;9(11).
    PMID: 30405082 DOI: 10.3390/genes9110540
    Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
  3. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
  4. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
  5. Siddig A, Tengku Din TADA, Mohd Nafi SN, Yahya MM, Sulong S, Wan Abdul Rahman WF
    Genes (Basel), 2021 03 05;12(3).
    PMID: 33807872 DOI: 10.3390/genes12030372
    Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
  6. Miya Shaik M, Tamargo IA, Abubakar MB, Kamal MA, Greig NH, Gan SH
    Genes (Basel), 2018 Mar 21;9(4).
    PMID: 29561798 DOI: 10.3390/genes9040174
    MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that post-transcriptionally regulate gene expression by base pairing with mRNA targets. Altered miRNA expression profiles have been observed in several diseases, including neurodegeneration. Multiple studies have reported altered expressions of miRNAs in the brains of individuals with Alzheimer's disease (AD) as compared to those of healthy elderly adults. Some of the miRNAs found to be dysregulated in AD have been reported to correlate with neuropathological changes, including plaque and tangle accumulation, as well as altered expressions of species that are known to be involved in AD pathology. To examine the potentially pathogenic functions of several dysregulated miRNAs in AD, we review the current literature with a focus on the activities of ten miRNAs in biological pathways involved in AD pathogenesis. Comprehensive understandings of the expression profiles and activities of these miRNAs will illuminate their roles as potential therapeutic targets in AD brain and may lead to the discovery of breakthrough treatment strategies for AD.
  7. Keating SE, Blumer M, Grismer LL, Lin A, Nielsen SV, Thura MK, et al.
    Genes (Basel), 2021 01 19;12(1).
    PMID: 33477871 DOI: 10.3390/genes12010116
    Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems.
  8. Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, et al.
    Genes (Basel), 2019 12 30;11(1).
    PMID: 31905942 DOI: 10.3390/genes11010046
    The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
  9. Mustafa MF, Fakurazi S, Abdullah MA, Maniam S
    Genes (Basel), 2020 02 12;11(2).
    PMID: 32059522 DOI: 10.3390/genes11020192
    Mitochondria are best known for their role in energy production, and they are the only mammalian organelles that contain their own genomes. The mitochondrial genome mutation rate is reported to be 10-17 times higher compared to nuclear genomes as a result of oxidative damage caused by reactive oxygen species during oxidative phosphorylation. Pathogenic mitochondrial DNA mutations result in mitochondrial DNA disorders, which are among the most common inherited human diseases. Interventions of mitochondrial DNA disorders involve either the transfer of viable isolated mitochondria to recipient cells or genetically modifying the mitochondrial genome to improve therapeutic outcome. This review outlines the common mitochondrial DNA disorders and the key advances in the past decade necessary to improve the current knowledge on mitochondrial disease intervention. Although it is now 31 years since the first description of patients with pathogenic mitochondrial DNA was reported, the treatment for mitochondrial disease is often inadequate and mostly palliative. Advancements in diagnostic technology improved the molecular diagnosis of previously unresolved cases, and they provide new insight into the pathogenesis and genetic changes in mitochondrial DNA diseases.
  10. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
  11. Yik MY, Azlan A, Rajasegaran Y, Rosli A, Yusoff NM, Moses EJ
    Genes (Basel), 2021 07 30;12(8).
    PMID: 34440361 DOI: 10.3390/genes12081188
    The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
  12. Teh CK, Ong AL, Mayes S, Massawe F, Appleton DR
    Genes (Basel), 2020 07 21;11(7).
    PMID: 32708151 DOI: 10.3390/genes11070826
    Superior oil yield is always the top priority of the oil palm industry. Short trunk height (THT) and compactness traits have become increasingly important to improve harvesting efficiency since the industry started to suffer yield losses due to labor shortages. Breeding populations with low THT and short frond length (FL) are actually available, such as Dumpy AVROS pisifera (DAV) and Gunung Melayu dura (GM). However, multiple trait stacking still remains a challenge for oil palm breeding, which usually requires 12-20 years to complete a breeding cycle. In this study, yield and height increment in the GM × GM (GM-3341) and the GM × DAV (GM-DAV-3461) crossing programs were evaluated and palms with good yield and smaller height increment were identified. In the GM-3341 family, non-linear THT growth between THT_2008 (seven years old) and THT_2014 (13 years old) was revealed by a moderate correlation, suggesting that inter-palm competition becomes increasingly important. In total, 19 quantitative trait loci (QTLs) for THT_2008 (8), oil per palm (O/P) (7) and FL (4) were localized on the GM-3341 linkage map, with an average mapping interval of 2.01 cM. Three major QTLs for THT_2008, O/P and FL are co-located on chromosome 11 and reflect the correlation of THT_2008 with O/P and FL. Multiple trait selection for high O/P and low THT (based on the cumulative effects of positive alleles per trait) identified one palm from 100 palms, but with a large starting population of 1000-1500 seedling per cross, this low frequency could be easily compensated for during breeding selection.
  13. Azaman SNA, Satharasinghe DA, Tan SW, Nagao N, Yusoff FM, Yeap SK
    Genes (Basel), 2020 09 25;11(10).
    PMID: 32992970 DOI: 10.3390/genes11101131
    Chlorella is a popular microalga with robust physiological and biochemical characteristics, which can be cultured under various conditions. The exploration of the small RNA content of Chlorella could improve strategies for the enhancement of metabolite production from this microalga. In this study, stress was introduced to the Chlorella sorokiniana culture to produce high-value metabolites such as carotenoids and phenolic content. The small RNA transcriptome of C. sorokiniana was sequenced, focusing on microRNA (miRNA) content. From the analysis, 98 miRNAs were identified in cultures subjected to normal and stress conditions. The functional analysis result showed that the miRNA targets found were most often involved in the biosynthesis of secondary metabolites, followed by protein metabolism, cell cycle, and porphyrin and chlorophyll metabolism. Furthermore, the biosynthesis of secondary metabolites such as carotenoids, terpenoids, and lipids was found mostly in stress conditions. These results may help to improve our understanding of regulatory mechanisms of miRNA in the biological and metabolic process of Chlorella species. It is important and timely to determine the true potential of this microalga species and to support the potential for genetic engineering of microalgae as they receive increasing focus for their development as an alternative source of biofuel, food, and health supplements.
  14. Mahmud N, Maffei M, Mogni M, Forni GL, Pinto VM, Barberio G, et al.
    Genes (Basel), 2021 11 19;12(11).
    PMID: 34828427 DOI: 10.3390/genes12111821
    BACKGROUND: Hemoglobin A (Hb A) (α2β2) in the normal adult subject constitutes 96-98% of hemoglobin, and Hb F is normally less than 1%, while for hemoglobin A2 (Hb A2) (α2δ2), the normal reference values are between 2.0 and 3.3%. It is important to evaluate the presence of possible delta gene mutations in a population at high risk for globin gene defects in order to correctly diagnose the β-thalassemia carrier.

    METHODS: The most used methods for the quantification of Hb A2 are based on automated high performance liquid chromatography (HPLC) or capillary electrophoresis (CE). In particular Hb analyses were performed by HPLC on three dedicated devices. DNA analyses were performed according to local standard protocols.

    RESULTS: Here, we described eight new δ-globin gene variants discovered and characterized in some laboratories in Northern Italy in recent years. These new variants were added to the many already known Hb A2 variants that were found with an estimated frequency of about 1-2% during the screening tests in our laboratories.

    CONCLUSIONS: The knowledge recognition of the delta variant on Hb analysis and accurate molecular characterization is crucial to provide an accurate definitive thalassemia diagnosis, particularly in young subjects who would like to ask for a prenatal diagnosis or preimplantation genetic diagnosis.

  15. Lam MQ, Oates NC, Leadbeater DR, Goh KM, Yahya A, Md Salleh M, et al.
    Genes (Basel), 2022 Nov 17;13(11).
    PMID: 36421811 DOI: 10.3390/genes13112135
    Robertkochia solimangrovi is a proposed marine bacterium isolated from mangrove soil. So far, the study of this bacterium is limited to taxonomy only. In this report, we performed a genomic analysis of R. solimangrovi that revealed its lignocellulose degrading ability. Genome mining of R. solimangrovi revealed a total of 87 lignocellulose degrading enzymes. These enzymes include cellulases (GH3, GH5, GH9 and GH30), xylanases (GH5, GH10, GH43, GH51, GH67, and GH115), mannanases (GH2, GH26, GH27 and GH113) and xyloglucanases (GH2, GH5, GH16, GH29, GH31 and GH95). Most of the lignocellulolytic enzymes encoded in R. solimangrovi were absent in the genome of Robertkochia marina, the closest member from the same genus. Furthermore, current work also demonstrated the ability of R. solimangrovi to produce lignocellulolytic enzymes to deconstruct oil palm empty fruit bunch (EFB), a lignocellulosic waste found abundantly in palm oil industry. The metabolic pathway taken by R. solimangrovi to transport and process the reducing sugars after the action of lignocellulolytic enzymes on EFB was also inferred based on genomic data. Collectively, genomic analysis coupled with experimental studies elucidated R. solimangrovi to serve as a promising candidate in seawater based-biorefinery industry.
  16. Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, et al.
    Genes (Basel), 2020 12 09;11(12).
    PMID: 33317074 DOI: 10.3390/genes11121479
    Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
  17. Abdulrauf Sharifai G, Zainol Z
    Genes (Basel), 2020 06 27;11(7).
    PMID: 32605144 DOI: 10.3390/genes11070717
    The training machine learning algorithm from an imbalanced data set is an inherently challenging task. It becomes more demanding with limited samples but with a massive number of features (high dimensionality). The high dimensional and imbalanced data set has posed severe challenges in many real-world applications, such as biomedical data sets. Numerous researchers investigated either imbalanced class or high dimensional data sets and came up with various methods. Nonetheless, few approaches reported in the literature have addressed the intersection of the high dimensional and imbalanced class problem due to their complicated interactions. Lately, feature selection has become a well-known technique that has been used to overcome this problem by selecting discriminative features that represent minority and majority class. This paper proposes a new method called Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm (rCBR-BGOA); rCBR-BGOA has employed an ensemble of multi-filters coupled with the Correlation-Based Redundancy method to select optimal feature subsets. A binary Grasshopper optimisation algorithm (BGOA) is used to construct the feature selection process as an optimisation problem to select the best (near-optimal) combination of features from the majority and minority class. The obtained results, supported by the proper statistical analysis, indicate that rCBR-BGOA can improve the classification performance for high dimensional and imbalanced datasets in terms of G-mean and the Area Under the Curve (AUC) performance metrics.
  18. Ho PY, Namasivayam P, Sundram S, Ho CL
    Genes (Basel), 2020 10 26;11(11).
    PMID: 33114747 DOI: 10.3390/genes11111263
    Ganoderma produces lignolytic enzymes that can degrade the lignin component of plant cell walls, causing basal stem rot to oil palms. Nitrogen sources may affect plant tolerance to root pathogens while hydrogen peroxide (H2O2), salicylic acid (SA) and jasmonic acid (JA) play important roles in plant defense against pathogens. In this study, we examined the expression of genes encoding manganese peroxidase (MnP) and laccase (Lac) in Ganoderma boninense treated with different nitrogen sources (ammonium nitrate, ammonium sulphate, sodium nitrate and potassium nitrate), JA, SA and H2O2. Transcripts encoding MnP and Lac were cloned from G. boninense. Of the three GbMnP genes, GbMnP_U6011 was up-regulated by all nitrogen sources examined and H2O2 but was down-regulated by JA. The expression of GbMnP_U87 was only up-regulated by JA while GbMnP_35959 was up-regulated by ammonium nitrate but suppressed by sodium nitrate and down-regulated by H2O2. Among the three GbLac genes examined, GbLac_U90667 was up-regulated by ammonium nitrate, JA, SA and H2O2; GbLac_U36023 was up-regulated by JA and H2O2 while GbLac_U30636 was up-regulated by SA but suppressed by ammonium sulphate, sodium nitrate, JA and H2O2. Differential expression of these genes may be required by their different functional roles in G. boninense.
  19. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
  20. Wong QN, Tanzi AS, Ho WK, Malla S, Blythe M, Karunaratne A, et al.
    Genes (Basel), 2017 Mar 09;8(3).
    PMID: 28282950 DOI: 10.3390/genes8030100
    Winged bean (Psophocarpus tetragonolobus) is an herbaceous multipurpose legume grown in hot and humid countries as a pulse, vegetable (leaves and pods), or root tuber crop depending on local consumption preferences. In addition to its different nutrient-rich edible parts which could contribute to food and nutritional security, it is an efficient nitrogen fixer as a component of sustainable agricultural systems. Generating genetic resources and improved lines would help to accelerate the breeding improvement of this crop, as the lack of improved cultivars adapted to specific environments has been one of the limitations preventing wider use. A transcriptomic de novo assembly was constructed from four tissues: leaf, root, pod, and reproductive tissues from Malaysian accessions, comprising of 198,554 contigs with a N50 of 1462 bp. Of these, 138,958 (70.0%) could be annotated. Among 9682 genic simple sequence repeat (SSR) motifs identified (excluding monomer repeats), trinucleotide-repeats were the most abundant (4855), followed by di-nucleotide (4500) repeats. A total of 18 SSR markers targeting di- and tri-nucleotide repeats have been validated as polymorphic markers based on an initial assessment of nine genotypes originated from five countries. A cluster analysis revealed provisional clusters among this limited, yet diverse selection of germplasm. The developed assembly and validated genic SSRs in this study provide a foundation for a better understanding of the plant breeding system for the genetic improvement of winged bean.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links