Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Sivaraju SS, Senthilkumar T, Sankar R, Anuradha T, Usha S, Bin Musirin I
    ISA Trans, 2024 Apr;147:215-226.
    PMID: 38402102 DOI: 10.1016/j.isatra.2024.01.034
    A hybrid technique is proposed in this manuscript for the optimal design of an induction motor (IM) drive for the dynamic load profiles during torque and flux control. The proposed hybrid method combines a Ladder-Spherical-Evolution-Search-Algorithm (LSE) and a recalling-enhanced recurrent-neural network (RERNN), which is called an LSE-RERNN technique. The major objective of the proposed method is to minimize IM losses while maintaining control over speed and torque. The proposed method effectively tunes the gain parameter of the PI controller for flux and torque regulation. The LSE methodgenerates a set of gain parameters optimally predicted by RERNN. The method reduces losses without prior knowledge of load profiles, achieving energy savings for steady-state optimum flux. The performance of the proposed technique is done in the MATLAB and is compared with different existing techniques. The value of the proposed method for the mean is 0.328, the standard deviation (SD) is 0.00334, and the median is 0.4173. The loss of the proposed method is much less than 0.3 W while compared to different existing approaches. Moreover, the computation time of the proposed approach is lesser than the existing techniques.
  2. Haruna A, Mohamed Z, Efe MÖ, Abdullahi AM
    ISA Trans, 2023 Oct;141:470-481.
    PMID: 37507325 DOI: 10.1016/j.isatra.2023.07.002
    In this paper, the energy efficiency of the widespread application of backstepping control to a class of nonlinear motion systems is investigated. A Switched Step Integral Backstepping Control (SSIBC) scheme is introduced to improve immunity to measurement noise and to increase the energy efficiency of conventional backstepping in practice. The SSIBC is realized by switching between two candidate controllers obtained at different steps of the iterative backstepping design process. A bi-state dependent hysteresis rule is developed to supervise stable switching between the different regimes in the presence of noise. The proposed method is experimentally verified on a MIMO twin rotor laboratory helicopter involving coupled nonlinear dynamics, inaccessible states and uncertainties. Experimental results show that in addition to a reduction in power consumption, the SSIBC reduces saturation of the control signal and visible motor jerking in contrast with conventional backstepping. Additional comparisons with a previously proposed optimized decoupling PID controller also show significant improvement in precision achieved with higher energy efficiency. Experimental results obtained with the introduction of an external disturbance into the system also show the robustness of the proposed SSIBC.
  3. Suid MH, Ahmad MA
    ISA Trans, 2021 Dec 16.
    PMID: 34991880 DOI: 10.1016/j.isatra.2021.11.037
    Automatic Voltage Regulator (AVR) is fabricated to sustain the voltage level of a synchronous generator spontaneously. Several control strategies have been introduced into the AVR system with the aim of gaining a better dynamic response. One of the most universally utilized controllers is the Proportional-Integral-Derivative (PID) controller. Despite the PID controller having a relatively high dynamic response, there are still further possibilities to improve in order to obtain more appropriate responses. This paper designed a sigmoid-based PID (SPID) controller for the AVR system in order to allow for an accelerated settling to rated voltage, as well as increasing the control accuracy. In addition, the parameters of the proposed SPID controller are obtained using an enhanced self-tuning heuristic optimization method called Nonlinear Sine Cosine Algorithm (NSCA), for achieving a better dynamic response, particularly with regards to the steady-state errors and overshoot of the system. A time-response specifications index is used to validate the proposed SPID controller. The obtained simulation results revealed that the proposed method was not only highly effective but also greatly improved the AVR system transient response in comparison to those with the modern heuristic optimization based PID controllers.
  4. Ganapathee M, Alavandar S, Kasinathan P, Sowmmiya U, Ramachandaramurthy VK, Pachaivannan N
    ISA Trans, 2021 Sep 03.
    PMID: 34531058 DOI: 10.1016/j.isatra.2021.09.001
    Many controllers are available in the market for controlling the Permanent Magnet Synchronous Motor (PMSM) drive application, though the most preferably used one is Proportional Integral (PI), controller. However, it is found that the PI and other latest controllers have their own merits and demerits while analyzing their outputs via comparison. Thus it is decided to test the deed of hybrid controllers that can serve a lot better than standalone controllers for precise control applications. In this article, a conventional PI controller has been applied in closed-loop system in combination with recent controllers like Proportional Resonant Controller (PRC), Fractional order Proportional Integral Derivative (FOPID), Hysteresis Current Controller (HCC) and Fuzzy Logic Controller (FLC). The resultant hybrid controllers were (i) PI-FOPID (ii) PI-FLC (iii) FOPID-FLC (iv) HCC-FLC and (v) PRC-FLC. All these hybrid controllers are designed using MATLAB platform and the speed and torque responses are compared to allocate the better performance award to the hybrid controllers. The continuous and intermittent loads are considered while registering time-domain response of PMSM-Pump application. With the aid of time-domain response and THD, the topology to be tested in prototype is chosen and tested for resemblance of the speed response with the simulation output. PI-FLC hybrid controller tends to render optimum performance characteristics among all the other hybrid controllers and the same is validated in real time through hardware results.
  5. Priyanka S, Sakthivel R, Mohanapriya S, Kong F, Saat S
    ISA Trans, 2021 Jun 22.
    PMID: 34217497 DOI: 10.1016/j.isatra.2021.06.022
    This paper investigates the issue of fault-tolerant and anti-disturbance attenuation for a two-dimensional modified repetitive control system (2D MRCS) which is described by switched fuzzy systems with multiple disturbances. In particular, the multiple disturbances contain an exogenous disturbance and standard Wiener noise. Specifically, a generalized extended state observer (GESO) is incorporated with the 2D MRCS to estimate both fault and exogenous multiple disturbances so that the disturbances and faults can be attenuated in the control input. Further, the improved 2D MRCS relaxes the stability condition and provides an enhanced tracking performance. Based on the Lyapunov function approach, pole placement technique and average dwell time approach, the stability criteria for the considered system is developed in terms of linear matrix inequality (LMI). Then an algorithm for designing a GESO-based 2D MRC design is developed based on the obtained LMIs. Further, the results developed are validated in the simulation section through three numerical examples.
  6. Tarusan SAA, Jidin A, Jamil MLM
    ISA Trans, 2021 Apr 16.
    PMID: 33931170 DOI: 10.1016/j.isatra.2021.04.005
    Direct Torque Control (DTC) scheme introduces a robust and simple control of electrical drive. However, its shortcomings such as broad torque ripple and variable switching frequency have offered several improvements like Space Vector Modulation (SVM) strategy, multilevel inverter (MLI) topology, etc. The conventional DTC which is fed by the two-level inverter has limited voltage vector, results in some difficulties to optimize the operation, especially at low operating speed. In contrast to MLI, the abundant of voltage vector has provided various amplitudes and angles that can overcome the problem of conventional DTC. Thus, this paper introduces the selected optimal voltage vector obtained from five-level Cascaded H-Bridge (CHB) inverter that employs in DTC hysteresis-based to achieve better optimization that similar to the DTC-SVM. Initially, the research work begins with an investigation on the performance comparison between a DTC hysteresis-based between two-level inverter (conventional method) and a five-level CHB inverter (proposed method). Here, a DC generator acted as a load is employed to control the operating speed instead of the speed controller (speed controller is negligible). Hence, the DTC method is optimized by minimizing the torque ripple as well as retaining the torque control capability at constant torque region on several operating speed. The selected optimal vector from the look-up table DTC of five-level CHB inverter must be dynamically appropriate to any change of torque (increased or decreased torque). For simplicity, this paper will only discuss the experimental results for both topologies of drive system. From the experimental results, it is verified that the torque ripples by the proposed method have achieved 10% and 50% reduction at high and low operating speed respectively. It is found that the DTC hysteresis-based result simpler control method than DTC-SVM while maintaining similar output performance.
  7. Talib MHN, Ibrahim Z, Abd Rahim N, Zulhani R, Nordin N, Farah N, et al.
    ISA Trans, 2020 Oct;105:230-239.
    PMID: 32475537 DOI: 10.1016/j.isatra.2020.05.040
    Fuzzy Logic Speed Controller (FLSC) has been widely used for motor drive due to its robustness and its non-reliance to real plant parameters. However, it is computationally expensive to be implemented in real-time and prone to the fuzzy rules' selection error which results in the failure of the drive's system. This paper proposes an improved simplified rules method for Fuzzy Logic Speed Controller (FLSC) based on the significant crisp output calculations to address these issues. A systematic procedure for the fuzzy rules reduction process is first described. Then, a comprehensive evaluation of the activated crisp output data is presented to determine the fuzzy dominant rules. Based on the proposed method, the number of rules was significantly reduced by 72%. The simplified FLSC rule is tested on the Induction Motor (IM) drives system in which the real-time implementation was carried out in the dSPACE DS1103 controller environment. The simulation and experimental results based on the proposed FLSC have proved the workability of the simplified rules without degrading the motor performance.
  8. Norsahperi NMH, Danapalasingam KA
    ISA Trans, 2020 Jul;102:230-244.
    PMID: 32169293 DOI: 10.1016/j.isatra.2020.03.001
    This paper examines two approaches in tuning fractional order proportional-integral-differential (FOPID) control named as neuro-based FOPID (NNFOPID) and particle swarm-based FOPID (PSOFOPID) for pitch control of a Twin Rotor Aerodynamic System (TRAS). For the neuro-based FOPID control, the innovations are the modification of output equation in the artificial neural network and the implementation of the Rectified Linear Unit (ReLU) activation function. The advantages of the proposed approach are a lighter network and the ability to tune more practical controller parameters without a deep knowledge of the system to achieve a satisfying pitch tracking response. As for the particle swarm-based FOPID control, the application of PSO with spreading factor algorithm is extended for tuning the FOPID controller gains and the innovation here is a new procedure in setting the initial search range. The important advantages of this proposed swarm-based algorithm are the avoidance of being trapped in local optima and reduction of the search area respectively. The performances of the proposed controllers are proven by extensive simulations and experimental verifications based on five standard criteria: square-wave characteristics, reference to disturbance ratio, evaluation time, energy consumption of the control signal and tracking performance. The performances of the proposed controllers are compared against an optimised PID control in three system conditions, namely Case I) without coupling effect and wind disturbance, Case II) with coupling effect only and Case III) with wind disturbance only. Together, this study finds that NNFOPID control offers an accurate system positioning by a 34% reduction in steady-state error with the lowest energy consumption and minimum evaluation time in Case II. In terms of the tracking performance and robustness for Case II, the superiority of PSOFOPID control is confirmed by a 27% reduction in the tracking error and the lowest oscillation value. The experimental results also validate the robustness and energy consumption of both controllers in Case III. It is envisaged that the proposed control designs can be very useful in tuning FOPID controller gains for high performance, low energy, and robust aerodynamics systems.
  9. Haruna A, Mohamed Z, Efe MÖ, Basri MAM
    ISA Trans, 2020 Feb;97:1-13.
    PMID: 31327468 DOI: 10.1016/j.isatra.2019.07.016
    This paper proposes an improved method of integral backstepping for real time control of a laboratory helicopter with variable speed rotors known as the Two-Rotor Aero-dynamic System (TRAS). The coupled system is decomposed into the horizontal subsystem (HS) and the vertical subsystem (VS) and traditional backstepping, augmented with direct integral action is designed for each subsystem. The transient response to both constant and time varying references is then simultaneously improved by modifying an already proposed method called dual boundary conditional integration. A switching technique is also employed to enhance the tracking response of the undamped HS for its bi-directional motor which exhibits jerking effects. Experimental results show that the proposed approach yields improved transient and tracking performance when compared to previously proposed methods exploiting conditional integration earlier proposed for improving the transient response of controlled nonlinear systems with integral action. The results also show the robustness of the proposed method in the presence of the coupling effects and additional external disturbance applied to the system in the form of a wind gust.
  10. Naderipour A, Abdul-Malek Z, Ramachandaramurthy VK, Kalam A, Miveh MR
    ISA Trans, 2019 Nov;94:352-369.
    PMID: 31078293 DOI: 10.1016/j.isatra.2019.04.025
    This paper proposes an improved hierarchical control strategy consists of a primary and a secondary layer for a three-phase 4-wire microgrid under unbalanced and nonlinear load conditions. The primary layer is comprised of a multi-loop control strategy to provide balanced output voltages, a harmonic compensator to reduce the total harmonic distortion (THD), and a droop-based scheme to achieve an accurate power sharing. At the secondary control layer, a reactive power compensator and a frequency restoration loop are designed to improve the accuracy of reactive power sharing and to restore the frequency deviation, respectively. Simulation studies and practical performance are carried out using the DIgSILENT Power Factory software and laboratory testing, to verify the effectiveness of the control strategy in both islanded and grid-connected mode. Zero reactive power sharing error and zero frequency steady-state error have given this control strategy an edge over the conventional control scheme. Furthermore, the proposed scheme presented outstanding voltage control performance, such as fast transient response and low voltage THD. The superiority of the proposed control strategy over the conventional filter-based control scheme is confirmed by the 2 line cycles decrease in the transient response. Additionally, the voltage THDs in islanded mode are reduced from above 5.1% to lower than 2.7% with the proposed control strategy under nonlinear load conditions. The current THD is also reduced from above 21% to lower than 2.4% in the connection point of the microgrid with the offered control scheme in the grid-connected mode.
  11. Hermansson AW, Syafiie S
    ISA Trans, 2019 Aug;91:66-77.
    PMID: 30782432 DOI: 10.1016/j.isatra.2019.01.037
    This paper investigates a novel offset-free control scheme based on a multiple model predictive controller (MMPC) and an adaptive integral action controller for nonlinear processes. Firstly, the multiple model description captures the essence of the nonlinear process, while keeping the MPC optimization linear. Multiple models also enable the controller to deal with the uncertainty associated with changing setpoint. Then, a min-max approach is utilized to counter the effect of parametric uncertainty between the linear models and the nonlinear process. Finally, to deal with other uncertainties, such as input and output disturbances, an adaptive integral action controller is run in parallel to the MMPC. Thus creating a novel offset-free approach for nonlinear systems that is more easily tuned than observer-based MPC. Simulation results for a pH-controller, which acts as an example of a nonlinear process, are presented to demonstrate the usefulness of the technique compared to using an observer-based MPC.
  12. Muthukumar P, Balasubramaniam P, Ratnavelu K
    ISA Trans, 2018 Nov;82:51-61.
    PMID: 28755926 DOI: 10.1016/j.isatra.2017.07.007
    This paper proposes a generalized robust synchronization method for different dimensional fractional order dynamical systems with mismatched fractional derivatives in the presence of function uncertainty and external disturbance by a designing sliding mode controller. Based on the proposed theory of generalized robust synchronization criterion, a novel audio cryptosystem is proposed for sending or sharing voice messages secretly via insecure channel. Numerical examples are given to verify the potency of the proposed theories.
  13. Tran CD, Ibrahim R, Asirvadam VS, Saad N, Sabo Miya H
    ISA Trans, 2018 Apr;75:236-246.
    PMID: 29478749 DOI: 10.1016/j.isatra.2017.12.010
    The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID.
  14. Seer QH, Nandong J
    ISA Trans, 2017 Mar;67:233-245.
    PMID: 28160974 DOI: 10.1016/j.isatra.2017.01.017
    Open-loop unstable systems with time-delays are often encountered in process industry, which are often more difficult to control than stable processes. In this paper, the stabilization by PID controller of second-order unstable processes, which can be represented as second-order deadtime with an unstable pole (SODUP) and second-order deadtime with two unstable poles (SODTUP), is performed via the necessary and sufficient criteria of Routh-Hurwitz stability analysis. The stability analysis provides improved understanding on the existence of a stabilizing range of each PID parameter. Three simple PID tuning algorithms are proposed to provide desired closed-loop performance-robustness within the stable regions of controller parameters obtained via the stability analysis. The proposed PID controllers show improved performance over those derived via some existing methods.
  15. Khan Q, Akmeliawati R, Bhatti AI, Khan MA
    ISA Trans, 2017 Jan;66:241-248.
    PMID: 27884392 DOI: 10.1016/j.isatra.2016.10.017
    This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique.
  16. Amini H, Farzaneh B, Azimifar F, Sarhan AAD
    ISA Trans, 2016 Sep;64:293-302.
    PMID: 27329852 DOI: 10.1016/j.isatra.2016.05.006
    This paper establishes a novel control strategy for a nonlinear bilateral macro-micro teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear micro-micro teleoperation system with the proposed control scheme is investigated employing the Lyapunov theory. Consequently, the experimental results verify the efficiency of the new control scheme in free motion and during collision between the slave robot and the environment of slave robot with environment, and the efficiency of the force estimation algorithm.
  17. Lotfivand N, Abdolzadeh V, Hamidon MN
    ISA Trans, 2016 Jul;63:425-435.
    PMID: 27038885 DOI: 10.1016/j.isatra.2016.03.012
    Numerous applications of artificial olfaction resulting from research in many branches of sciences have caused considerable interest in the enhancement of these systems. In this paper, we offer an architecture which is suitable for critical applications, such as medical diagnosis, where reliability and precision are deemed important. The proposed architecture is able to tolerate failures in the sensors of the array. In this study, the discriminating ability of the proposed architecture in detecting complex odors, as well as the performance of the proposed architecture in encountering sensor failure, were investigated and compared with the generic architecture. The results demonstrated that by applying the proposed architecture in the artificial olfactory system, the performance of system in the healthy mode was identical to the classic structure. However, in the faulty situation, the proposed architecture implied high identification ability of odor samples, while the generic architecture showed very poor performance in the same situation. Based on the results, it was possible to achieve high odor identification through the developed artificial olfactory system using the proposed architecture.
  18. Bouafassa A, Rahmani L, Mekhilef S
    ISA Trans, 2015 Mar;55:267-74.
    PMID: 25457043 DOI: 10.1016/j.isatra.2014.10.004
    This paper presents a real time implementation of the single-phase power factor correction (PFC) AC-DC boost converter. A combination of higher order sliding mode controller based on super twisting algorithm and predictive control techniques are implemented to improve the performance of the boost converter. Due to the chattering effects, the higher order sliding mode control (HOSMC) is designed. Also, the predictive technique is modified taking into account the large computational delays. The robustness of the controller is verified conducting simulation in MATLAB, the results show good performances in both steady and transient states. An experiment is conducted through a test bench based on dSPACE 1104. The experimental results proved that the proposed controller enhanced the performance of the converter under different parameters variations.
  19. Fayek HM, Elamvazuthi I, Perumal N, Venkatesh B
    ISA Trans, 2014 Sep;53(5):1583-91.
    PMID: 24962934 DOI: 10.1016/j.isatra.2014.06.001
    A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances.
  20. Huda AS, Taib S, Ghazali KH, Jadin MS
    ISA Trans, 2014 May;53(3):717-24.
    PMID: 24593986 DOI: 10.1016/j.isatra.2014.02.003
    Infrared thermography technology is one of the most effective non-destructive testing techniques for predictive faults diagnosis of electrical components. Faults in electrical system show overheating of components which is a common indicator of poor connection, overloading, load imbalance or any defect. Thermographic inspection is employed for finding such heat related problems before eventual failure of the system. However, an automatic diagnostic system based on artificial neural network reduces operating time, human efforts and also increases the reliability of system. In the present study, statistical features and artificial neural network (ANN) with confidence level analysis are utilized for inspection of electrical components and their thermal conditions are classified into two classes namely normal and overheated. All the features extracted from images do not produce good performance. Features having low performance reduce the diagnostic performance. The study reveals the performance of each feature individually for selecting the suitable feature set. In order to find the individual feature performance, each feature of thermal image was used as input for neural network and the classification of condition types were used as output target. The multilayered perceptron network using Levenberg-Marquardt training algorithm was used as classifier. The performances were determined in terms of percentage of accuracy, specificity, sensitivity, false positive and false negative. After selecting the suitable features, the study introduces the intelligent diagnosis system using suitable features as inputs of neural network. Finally, confidence percentage and confidence level were used to find out the strength of the network outputs for condition monitoring. The experimental result shows that multilayered perceptron network produced 79.4% of testing accuracy with 43.60%, 12.60%, 21.40, 9.20% and 13.40% highest, high, moderate, low and lowest confidence level respectively.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links