Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, et al.
    J Control Release, 2016 Oct 10;239:1-9.
    PMID: 27524284 DOI: 10.1016/j.jconrel.2016.08.011
    Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits their applications in intravenous drug delivery and targeting. Using a binary mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios, we describe a library of colloidally stable aqueous and hemocompatible nanodispersions of diverse nanoarchitectures (internal self-assembled nanostructures). This engineered library is structurally stable in human plasma as well as being hemocompatible (non-hemolytic, and poor activator of the complement system). By varying citrem to lipid weight ratio, the nanodispersion susceptibility to macrophage uptake could also be modulated. Finally, the formation of nanodispersions comprising internally V2 (inverse bicontinuous cubic) and H2 (inverse hexagonal) nanoarchitectures was achieved without the use of an organic solvent, a secondary emulsifier, or high-energy input. The tunable binary citrem/SPC nanoplatform holds promise for future development of hemocompatible and immune-safe nanopharmaceuticals.
  2. Wong TW
    J Control Release, 2014 Nov 10;193:257-69.
    PMID: 24801250 DOI: 10.1016/j.jconrel.2014.04.045
    Transdermal drug delivery is hindered by the barrier property of the stratum corneum. It limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500Da and melting point of less than 200°C. Active methods such as iontophoresis, electroporation, sonophoresis, magnetophoresis and laser techniques have been investigated for the past decades on their ability, mechanisms and limitations in modifying the skin microenvironment to promote drug diffusion and partition. Microwave, an electromagnetic wave characterized by frequencies range between 300MHz and 300GHz, has recently been reported as the potential skin permeation enhancer. Microwave has received a widespread application in food, engineering and medical sectors. Its potential use to facilitate transdermal drug transport is still in its infancy stage of evaluation. This review provides an overview and update on active methods utilizing electrical, magnetic, photomechanical and cavitational waves to overcome the skin barrier for transdermal drug administration with insights into mechanisms and future perspectives of the latest microwave technique described.
  3. Sultana A, Tiash S
    J Control Release, 2021 04 10;332:233-244.
    PMID: 33561481 DOI: 10.1016/j.jconrel.2021.02.004
    E. coli mediated gene delivery faces a major drawback of low efficiency despite of being a safer alternative to viral vectors. This study showed a novel, simple and effective strategy to enhance invasive E. coli DH10B vector's efficiency in human epithelial cells. The bactofection efficiency of invasive E .coli vector was analyzed in nine cell lines. It demonstrated highest (16%) reporter gene (GFP) expression in cervical cells. Methods were employed to further enhance its efficiency by adding transfection reagents (trans-bactofection method) to promote entry into host cells, lysosomotropic reagents for escape from lysosomal degradation or antibiotics to lyse internalized bacteria. Increased bacterial entry, as elucidated from nil to 3% expression in liver cells, was obtained upon complexing bacteria with PULSin. Chloroquine mediated endosomal escape resulted in 7.2 folds increase whereas tetracycline addition to lyse internalized bacteria caused ≈90% of GFP in HeLa. Eventually, the combined effect of these three methods exhibited close to 100% GFP in cervical and remarkable increase of 138 folds in breast cells. This is the first study showing comparative study of vector's gene delivery ability in various epithelial cells of the human body with improving its delivery efficiency. These data demonstrated the potential of developed bactofection method to boost up the efficiency of other bacterial vectors also, which could further be used for effectual therapeutic gene delivery in human cells.
  4. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH
    J Control Release, 2014 May 10;181:11-21.
    PMID: 24593892 DOI: 10.1016/j.jconrel.2014.02.020
    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research.
  5. Beishenaliev A, Loke YL, Goh SJ, Geo HN, Mugila M, Misran M, et al.
    J Control Release, 2023 Jul;359:268-286.
    PMID: 37244297 DOI: 10.1016/j.jconrel.2023.05.032
    Monospecific antibodies have been utilised increasingly for anti-cancer drug targeting owing to their ability to minimise off-target toxicity by binding specifically to a tumour epitope, hence selectively delivering drugs to the tumour cells. Nevertheless, the monospecific antibodies only engage a single cell surface epitope to deliver their drug payload. Hence, their performance is often unsatisfactory in cancers where multiple epitopes need to be engaged for optimal cellular internalisation. In this context, bispecific antibodies (bsAbs) that simultaneously target two distinct antigens or two distinct epitopes of the same antigen offer a promising alternative in antibody-based drug delivery. This review describes the recent advances in developing bsAb-based drug delivery strategies, encompassing the direct conjugation of drug to bsAbs to form bispecific antibody-drug conjugates (bsADCs) and the surface functionalisation of nanoconstructs with bsAbs to form bsAb-coupled nanoconstructs. The article first details the roles of bsAbs in enhancing the internalisation and intracellular trafficking of bsADCs with subsequent release of chemotherapeutic drugs for an augmented therapeutic efficacy, particularly among heterogeneous tumour cell populations. Then, the article discusses the roles of bsAbs in facilitating the delivery of drug-encapsulating nanoconstructs, including organic/inorganic nanoparticles and large bacteria-derived minicells, that provide a larger drug loading capacity and better stability in blood circulation than bsADCs. The limitations of each type of bsAb-based drug delivery strategy and the future prospects of more versatile strategies (e.g., trispecific antibodies, autonomous drug delivery systems, theranostics) are also elaborated.
  6. Naz MY, Sulaiman SA
    J Control Release, 2016 Mar 10;225:109-20.
    PMID: 26809006 DOI: 10.1016/j.jconrel.2016.01.037
    Developing countries are consuming major part of the global urea production with an anticipated nitrogen use efficiency of 20 to 35%. The release of excess nitrogen in the soil is not only detrimental to the environment but also lessens the efficiency of the conventional urea. The urea performance can be enhanced by encapsulating it with slow release coating materials and synchronizing the nutrients' release with the plant up-taking. However, the present cost of most of the coated fertilizers is considerably higher than the conventional fertilizers. The high cost factor prevents their widespread use in mainstream agriculture. This paper documents a review of literature related to the global urea market, issues pertaining to the conventional urea use, natural and synthetic materials for slow release urea and fluidized bed spray coating process. The aim of the current review is to develop technical understanding of the conventional and non-conventional coating materials and associated spray coating mechanism for slow release urea production. The study also investigated the potential of starch as the coating material in relation to the coatings tested previously for controlled release fertilizers.
  7. See GL, Arce F, Dahlizar S, Okada A, Fadli MFBM, Hijikuro I, et al.
    J Control Release, 2020 Sep 10;325:1-9.
    PMID: 32598958 DOI: 10.1016/j.jconrel.2020.06.028
    Intranasal administration is poised as a competent method in delivering drugs to the brain, because the nasal route has a direct link with the central nervous system bypassing the formidable blood-brain barrier. C17-monoglycerol ester (MGE) and glyceryl monooleate (GMO) as liquid crystal (LC)-forming lipids possess desirable formulation characteristics as drug carriers for intranasally administered drugs. This study investigated the effect of LC formulations on the pharmacokinetics of tranilast (TL), a lipophilic model drug, and its distribution in the therapeutic target regions of the brain in rats. The anatomical biodistribution of LC formulations was monitored using micro-computed tomography tandem in vivo imaging systems. MGE and GMO effectively formed LC with suitable particle size, zeta potential, and viscosity supporting the delivery of TL to the brain. MGE and GMO LC formulations enhanced brain uptake by 10- to 12-fold and 2- to 2.4- fold, respectively, compared with TL solution. The olfactory bulb had the highest TL concentration and fluorescent signals among all the brain regions, indicating a direct nose-to-brain delivery pathway of LC formulations. LC-forming lipids, MGE and GMO, are potential biomaterials in formulations intended for intranasal administration.
  8. Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, et al.
    J Control Release, 2022 Feb 08.
    PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005
    A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
  9. Jazayeri SD, Ideris A, Zakaria Z, Shameli K, Moeini H, Omar AR
    J Control Release, 2012 Jul 10;161(1):116-23.
    PMID: 22549012 DOI: 10.1016/j.jconrel.2012.04.015
    DNA formulations provide the basis for safe and cost effective vaccine. Low efficiency is often observed in the delivery of DNA vaccines. In order to assess a new strategy for oral DNA vaccine formulation and delivery, plasmid encoding hemagglutinin (HA) gene of avian influenza virus, A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5) was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). AgNP were successfully synthesized uniformly dispersed with size in the range of 4 to 18 nm with an average size of 11 nm. Cytotoxicity of the prepared AgNP was investigated in vitro and in vivo using MCF-7 cells and cytokine expression, respectively. At the concentration of -5 log₁₀AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5% cell death compared to the control. One-day-old specific pathogen-free (SPF) chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (200 ng/ml) nanoencapsulated with 40 μl AgNP (3.7×10⁻² μg of Ag) showed no clinical manifestations. PCR successfully detect the AgNP/H5 plasmid from the duodenum of the inoculated chicken as early as 1h post-immunization. Immunization of chickens with AgNP/H5 enhanced both pro inflammatory and Th1-like expressions, although no significant differences were recorded in the chickens inoculated with AgNP, AgNP/pcDNA3.1 and the control. In addition, serum samples collected from immunized chickens with AgNP/H5 showed rapidly increasing antibody against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 post-immunization at 51.2±7.5. AgNP/H5 also elicited both CD4+ and CD8+ T cells in the immunized chickens as early as day 14 after immunization, at 7.5±2.0 and 20±1.9 percentage, respectively. Hence, single oral administrations of AgNP/H5 led to induce both the antibody and cell-mediated immune responses as well as enhanced cytokine production.
  10. Chen XY, Butt AM, Mohd Amin MCI
    J Control Release, 2019 10;311-312:50-64.
    PMID: 31465827 DOI: 10.1016/j.jconrel.2019.08.031
    The current conventional injectable vaccines face several drawbacks such as inconvenience and ineffectiveness in mucosal immunization. Therefore, the current development of effective oral vaccines is vital to enable the generation of dual systemic and mucosal immunity. In the present study, we examine the potential of pH-responsive bacterial nanocellulose/polyacrylic acid (BNC/PAA) hydrogel microparticles (MPs) as an oral vaccine carrier. In-vitro entrapment efficiency and release study of Ovalbumin (Ova) demonstrated that as high as 72% of Ova were entrapped in the hydrogel, and the release of loaded Ova was pH-dependent. The released Ova remained structurally conserved as evident by Western blot and circular dichroism. Hydrogel MPs reduced the TEER measurement of HT29MTX/Caco2/Raji B triple co-culture monolayer by reversibly opening the tight junctions (TJs) as shown in the TEM images. The ligated ileal loop assay revealed that hydrogel MPs could facilitate the penetration of FITC-Ova into the Peyer's patches in small intestine. Ova and cholera toxin B (CTB) were utilized in in-vivo oral immunization as model antigen and mucosal adjuvant. The in-vivo immunization revealed mice orally administered with Ova and CTB-loaded hydrogel MPs generated significantly higher level of serum anti-Ova IgG and mucosal anti-Ova IgA in the intestinal washes, compared to intramuscular administrated Ova. These results conclude that BNC/PAA hydrogel MPs is a potential oral vaccine carrier for effective oral immunization.
  11. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
  12. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Nakamura Y, Chuang VTG, et al.
    J Control Release, 2018 05 10;277:23-34.
    PMID: 29530390 DOI: 10.1016/j.jconrel.2018.02.037
    Human serum albumin (HSA) is a superior carrier for delivering extracellular drugs. However, the development of a cell-penetrating HSA remains a great challenge due to its low membrane permeability. We report herein on the design of a series of palmitoyl-poly-arginine peptides (CPPs) and an evaluation of their cell-penetrating effects after forming a complex with HSA for use in intracellular drug delivery. The palmitoyl CPPs forms a stable complex with HSA by anchoring itself to the high affinity palmitate binding sites of HSA. Among the CPPs evaluated, a cyclic polypeptide composed of D-dodecaarginines, palmitoyl-cyclic-(D-Arg)12 was the most effective for facilitating the cellular uptake of HSA by HeLa cells. Such a superior cell-penetrating capability is primarily mediated by macropinocytosis. The effect of the CPP on pharmacological activity was examined using three drugs loaded in HSA via three different methods: a) an HSA-paclitaxel complex, b) an HSA-doxorubicin covalent conjugate and c) an HSA-thioredoxin fusion protein. The results showed that cell-penetrating efficiency was increased with a corresponding and significant enhancement in pharmacological activity. In conclusion, palmitoyl-cyclic-(D-Arg)12/HSA is a versatile cell-penetrating drug delivery system with great potential for use as a nano-carrier for a wide diversity of pharmaceutical applications.
  13. Ashrafizadeh M, Delfi M, Zarrabi A, Bigham A, Sharifi E, Rabiee N, et al.
    J Control Release, 2022 Nov;351:50-80.
    PMID: 35934254 DOI: 10.1016/j.jconrel.2022.08.001
    The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.
  14. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY
    J Control Release, 2019 12 28;316:168-195.
    PMID: 31669211 DOI: 10.1016/j.jconrel.2019.09.019
    The applications of eutectic systems, including deep eutectic solvents (DESs), in diverse sectors have drawn significant interest from researchers, academicians, engineers, medical scientists, and pharmacists. Eutecticity increases drug dissolution, improves drug penetration, and acts as a synthesis route for drug carriers. To date, DESs have been extensively explored as potential drug delivery systems on account of their unique properties such as tunability and chemical and thermal stability. This review discusses two major topics: first, the application of eutectic mixtures (before and after the introduction of DES) in the field of drug delivery systems, and second, the most promising examples of DES pharmaceutical activity. It also considers future prospects in the medical and biotechnological fields. In addition to the application of DESs in drug delivery systems, they show greatly promising pharmaceutical activities, including anti-fungal, anti-bacterial, anti-viral, and anti-cancer activities. Eutecticity is a valid strategy for overcoming many obstacles inherently associated with either introducing new drugs or enhancing drug delivery systems.
  15. Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, et al.
    J Control Release, 2020 Aug 10;324:69-103.
    PMID: 32423874 DOI: 10.1016/j.jconrel.2020.05.014
    The recent designs of dynamic nanoassemblies exploiting the tumor-targeting properties have received increasing attention for tumor imaging and therapy due to their tumor-specific delivery and enhanced antitumor efficacy. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the nano-bio interactions in the tumor microenvironment (TME) remain poorly understood. This review aims to provide an overview of the development of tumor-responsive nanoassemblies towards the imaging, therapy and TME modulation in the tumor site. The tumor biology leading to TME formation and the potential TME properties for the practicable design of tumor-targeting nanoassemblies has been outlined. Furthermore, the various approaches for TME modification and the realization via dynamic nanoassemblies for enhanced tumor therapy were reviewed. Lastly, the prospects of these methods were briefly discussed. These strategies may inspire the development of new combinational cancer therapeutics.
  16. Geo HN, Murugan DD, Chik Z, Norazit A, Foo YY, Leo BF, et al.
    J Control Release, 2022 Jan 24;343:237-254.
    PMID: 35085695 DOI: 10.1016/j.jconrel.2022.01.033
    Acute kidney injury (AKI) causes considerable morbidity and mortality, particularly in the case of post-cardiac infarction or kidney transplantation; however, the site-specific accumulation of small molecule reno-protective agents for AKI has often proved ineffective due to dynamic fluid and solute excretion and non-selectivity, which impedes therapeutic efficacy. This article reviews the current status and future trajectories of renal nanomedicine research for AKI management from pharmacological and clinical perspectives, with a particular focus on appraising nanosized drug carrier (NDC) use for the delivery of reno-protective agents of different pharmacological classes and the effectiveness of NDCs in improving renal tissue targeting selectivity and efficacy of said agents. This review reveals the critical shift in the role of the small molecule reno-protective agents in AKI pharmacotherapy - from prophylaxis to treatment - when using NDCs for delivery to the kidney. We also highlight the need to identify the accumulation sites of NDCs carrying reno-protective agents in renal tissues during in vivo assessments and detail the less-explored pharmacological classes of reno-protective agents whose efficacies may be improved via NDC-based delivery. We conclude the paper by outlining the challenges and future perspectives of NDC-based reno-protective agent delivery for better clinical management of AKI.
  17. Ghanghoria R, Kesharwani P, Tekade RK, Jain NK
    J Control Release, 2018 01 10;269:277-301.
    PMID: 27840168 DOI: 10.1016/j.jconrel.2016.11.002
    Cancer is a prime healthcare problem that is significantly responsible for universal mortality. Despite distinguished advancements in medical field, chemotherapy is still the mainstay for the treatment of cancers. During chemotherapy, approximately 90% of the administered dose goes to normal tissues, with mere 2-5% precisely reaching the cancerous tissues. Subsequently, the resultant side effects and associated complications lead to dose reduction or even discontinuance of the therapy. Tumor directed therapy therefore, represents a fascinating approach to augment the therapeutic potential of anticancer bioactives as well as overcomes its side effects. The selective overexpression of LHRH receptors on human tumors compared to normal tissues makes them a suitable marker for diagnostics, molecular probes and targeted therapeutics. These understanding enabled the rational to conjugate LHRH with various cytotoxic drugs (doxorubicin, DOX; camptothecin etc.), cytotoxic genes [small interfering RNA (siRNA), micro RNA (miRNA)], as well as therapeutic nanocarriers (nanoparticles, liposomes or dendrimers) to facilitate their tumor specific delivery. LHRH conjugation enhances their delivery via LHRH receptor mediated endocytosis. Numerous cytotoxic analogs of LHRH were developed over the past two decades to target various types of cancers. The potency of LHRH compound were reported to be as high as 5,00-10,00 folds compared to parent molecules. The objective of this review article is to discuss reports on various LHRH analogs with special emphasis on their prospective application in the medical field. The article also focuses on the attributes that must be taken into account while designing a LHRH therapeutics with special account to the biochemistry and applications of these conjugates. The record on various cytotoxic analogs of LHRH are also discussed. It is anticipated that the knowledge of therapeutic and toxicological aspects of LHRH compounds will facilitate the development of a more systematic approach to the targeted delivery of cytotoxic agents using peptides.
  18. Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z
    J Control Release, 2019 06 10;303:181-208.
    PMID: 31015032 DOI: 10.1016/j.jconrel.2019.04.027
    Owing to its intricate autoimmune pathophysiology and significant risks of progression to other rheumatic co-morbidities (i.e., osteoporosis and osteoarthritis), a plausible therapeutic regimen is mandatory for early-stage management of rheumatoid arthritis (RA). Nevertheless, the conventional therapeutic agents particularly the corticosteroids and disease-modifying anti-rheumatic drugs (DMARDs) have shown grander success in the treatment of RA; however, long-term use of these agents is also associated with serious adverse events. To combat these issues and optimize therapeutic efficacy, nanotechnology-based interventions have been emerged as viable option. While, nanomedicines signposted superiority over the conventional pharmacological moieties; there are still many pharmacokinetic and pharmacodynamic challenges to nanomedicines following their intravenous or intra-articular administration. To circumvent these challenges, significant adaptations such as PEGylation, surface conjugation of targeting ligand(s), and site- responsive behavior (i.e., pH-, biochemical-, or thermal-responsiveness) have been implemented. Besides, multi-functionalization of nanomedicines has been emerging as an exceptional strategy to overcome pharmacokinetic challenges, improve targetability to inflamed synovium, maximise internalisation into the activated macrophages, and improved therapeutic outcomes for treatment of RA. Therefore, this review aims to conceptualize and recapitulate the substantial evidences regarding the pharmacokinetic and pharmacodynamic superiority of multi-functionalized nanomedicines over the naked nanomedicines for site-selective targeting to inflamed synovium and rational treatment of RA and other rheumatic co-morbidities. Pharmaceutical sustainability of the multi-functionalized nanomedicines for improved biocompatibility, profound interaction with the targeting tissue/cells/sub-cellular domain, and diminished systemic toxicity has also been pondered.
  19. Gao X, Guo L, Li J, Thu HE, Hussain Z
    J Control Release, 2018 12 28;292:29-57.
    PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024
    Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links