Displaying publications 1 - 20 of 38 in total

  1. Gaur P, Kumar P, Sharma A, Lal SK
    Lett Appl Microbiol, 2020 Apr;70(4):252-258.
    PMID: 31990997 DOI: 10.1111/lam.13279
    Neuraminidase (NA) is an integral membrane protein of influenza A virus (IAV) and primarily aids in the release of progeny virions, following the intracellular viral replication cycle. In an attempt to discover new functions of NA, we conducted a classical yeast two-hybrid screen and found acute myeloid leukaemia marker 1 (AML1) as a novel interacting partner of IAV-NA. The interaction was further validated by co-immunoprecipitation in IAV-infected cells and in an in vitro coupled transcription/translation system. Interestingly, we found an increase in the expression of AML1 upon IAV infection in a dose-dependent manner. As expected, we also observed an increase in the IFN-β levels, the first line of defence against viral infections. Subsequently, when AML1 was downregulated using siRNA, the IFN-β levels were found to be remarkably reduced. Our study also shows that AML1 is induced upon IAV infection and results in the induction of IFN-β. Thus, AML1 is proposed to be an important player in IFN induction and has a role in an antiviral response against IAV infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Influenza epidemics and pandemics are constant threats to human health. Development of antiviral therapeutics has focused on important and major IAV proteins as targets. However, the rate at which this virus mutates makes the task challenging. Thus, next-generation approaches aim at host cellular proteins that aid the virus in its replication. This study reports a new host-virus interaction, of acute myeloid leukaemia marker 1 (AML1) with influenza A neuraminidase (IAV-NA). We have found that this interaction has a direct effect on the upregulation of host IFN-β response. Further studies may lead to a greater understanding of this new innate defence pathway in infected cells.
  2. Jin LZ, Ho YW, Abdullah N, Jalaludin S
    Lett Appl Microbiol, 1998 Sep;27(3):183-5.
    PMID: 9750324
    Twelve Lactobacillus strains isolated from chicken intestine were used to investigate acid and bile tolerance in vitro. Ten out of the 12 strains were slightly affected by 0.3% bile salts, showing a delay of growth (d) of 0.6-37.2 min compared with growth in control cultures. Two strains were not affected by the bile salts. Of the 12 strains, seven could be arbitrarily classified as resistant (d < 15 min) and five as tolerant (15 min < d < or = 40 min). Lactobacillus strains from the caecum showed better tolerance to acid than those from the ileum. Generally, the survival of the ileal strains was very low at pH 1.0 and 2.0, and moderate at pH 3.0. In contrast, caecal Lactobacillus strains could survive at pH 1.0 for up to 2 h of incubation; growth was moderate at pH 2.0 and good at pH 3.0 and 4.0.
  3. Jin LZ, Ho YW, Ali MA, Abdullah N, Ong KB, Jalaludin S
    Lett Appl Microbiol, 1996 Mar;22(3):229-32.
    PMID: 8852352
    A total of 46 Lactobacillus isolates obtained from chicken intestine were assessed on their ability to adhere to the chicken ileal epithelial cell (IEC) in vitro. Twelve out of the 46 isolates showed moderate to good ability to adhere to the IEC. Temperature (between 4 degrees C and 42 degrees C) did not affect attachment. Incubation (contact) time of 30 min was found to be insufficient for the attachment of bacteria to the IEC, but contact time beyond 1 h did not increase this ability. The pH values (4-7) of the suspending buffer did not have any significant effect on the attachment of bacteria to the IEC, but at pH 8 it was reduced significantly (P < 0.05).
  4. Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S
    Lett Appl Microbiol, 1996 Aug;23(2):67-71.
    PMID: 8987444
    Twelve Lactobacillus strains isolated from chicken intestine, which demonstrated a strong and moderate capacity to adhere to the ileal epithelial cells in vitro, were used to investigate their inhibitory ability against five strains of salmonella, i.e. Salmonella enteritidis 935/79, Salm. pullorum, Salm. typhimurium, Salm. blockley and Salm. enteritidis 94/448, and three serotypes of Escherichia coli, viz. E. coli O1:K1, O2:K1 and O78:K80. The results showed that all the 12 Lactobacillus isolates were able to inhibit the growth of the five strains of salmonella, and the three strains of E. coli in varying degrees. Generally, they were more effective in inhibiting the growth of salmonella than E. coli. Inhibition of the pathogenic bacteria was probably due to the production of organic acids by the Lactobacillus isolates.
  5. Tan YN, Ayob MK, Osman MA, Matthews KR
    Lett Appl Microbiol, 2011 Nov;53(5):509-17.
    PMID: 21848644 DOI: 10.1111/j.1472-765X.2011.03137.x
    The goal of this study was to determine inhibitory effect of palm kernel expeller (PKE) peptides of different degree of hydrolysis (DH %) against spore-forming bacteria Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophillus, Bacillus subtilis, Bacillus thuringiensis, Clostridium perfringens; and non-spore-forming bacteria Escherichia coli, Lisinibacillus sphaericus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium and Staphylococcus aureus.
  6. Son R, Rusul G, Sahilah AM, Zainuri A, Raha AR, Salmah I
    Lett Appl Microbiol, 1997 Jun;24(6):479-82.
    PMID: 9203404
    Strains of Aeromonas hydrophila isolates from skin lesions of the common freshwater fish, Telapia mossambica, were screened for the presence of plasmid DNA by agarose gel electrophoresis and tested for susceptibility to 10 antimicrobial agents. Of the 21 fish isolates examined, all were resistant to ampicillin and sensitive to gentamycin. Most isolates were resistant to streptomycin (57%), tetracycline (48%) and erythromycin (43%). While seven of 21 isolates harboured plasmids, with sizes ranging from 3 to 63.4 kilobase pair (kb), it was only possible to associate the presence of a plasmid with antibiotic resistance (ampicillin and tetracycline) in strain AH11. Both the plasmid and the associated antimicrobial resistance could be transferred to an Escherichia coli recipient by single-step conjugation at a frequency of 4.3 x 10(-3) transconjugants per donor cell.
  7. Yazid AM, Ali AM, Shuhaimi M, Kalaivaani V, Rokiah MY, Reezal A
    Lett Appl Microbiol, 2000 Jul;31(1):57-62.
    PMID: 10886616
    Eighteen Bifidobacterium strains were tested for their susceptibility to a range of antimicrobial agents. All the strains tested, including the reference culture Lactobacillus acidophilus CH2, were susceptible to several groups of antimicrobial agents, they were cephalosporin (cefamandole, cefazolin, cefaperazone, cefoxitin), polypeptide (bacitracin), macrolide (erythromycin), penicillin (amoxicillin), phenicol (chloramphenicol) and beta-lactam (imipenem). Fourteen strains were resistant to more than 10 antibiotics. The reference culture was resistant to only three antibiotics. The results showed that bifidobacteria are resistant to a wide range of antimicrobial agents.
  8. Firdose A, Chong NHH, Ramli R, Aqma WS
    Lett Appl Microbiol, 2023 Feb 16;76(2).
    PMID: 36702549 DOI: 10.1093/lambio/ovad013
    The aim of this study was to test the antimicrobial, antiadhesive, and antibiofilm activities of a rhamnolipid extracted from Pseudomonas aeruginosa UKMP14T previously isolated from oil-contaminated soil in Malaysia against ESKAPE (i.e. multidrug resistant) pathogens. Zones of inhibition in an agar well diffusion assay were observed at 50 µg mL-1 concentrations of rhamnolipid for all the ESKAPE bacteria. The MIC and MBC values ranged between 7.81-62.5 µg mL-1 and 31.25-1000 µg mL-1, respectively. Percent killing was recorded to be >90% except for Klebsiella pneumoniae (86.84%). Furthermore, antiadhesion studies showed that there was 76% hindrance in attachment of Enterococcus faecium and 91% in Acinetobacter baumannii at 4 × MIC. The highest inhibition in adhesion was found at 4 × MIC, which was 46% for Ac. baumannii and 62% for Enterococcus faecium. Finally, the antibiofilm capability of the rhamnolipid was determined, which ranged between 25%-76% in Ac. baumannii and 35%-88% in Enterococcus faecium. To the best of our knowledge, this is the first study to include research on antimicrobial, antiadhesive and antibiofilm activities of rhamnolipid from the local isolate Ps. aeruginosa UKMP14T against ESKAPE bacteria. Obtained results suggest that this rhamnolipid can be exploited commercially for the production of novel antibiotics.
  9. Omoregie AI, Ong DEL, Nissom PM
    Lett Appl Microbiol, 2019 Feb;68(2):173-181.
    PMID: 30537001 DOI: 10.1111/lam.13103
    Biocalcification through the use of ureolytic bacteria and biochemical activities has evolved in recent decades into a fervent resourceful effective technology suitable for soil stabilization, crack repair and bioremediation. Extensive studies have been carried out on numerous ureolytic bacterial species isolated from soils and sewage samples. However, very limited attention has been given to limestone caves with natural calcite formations as a possible source for isolation of ureolytic bacteria. In this study, bacterial isolates were recovered from limestone cave samples to determine their suitability for biocalcification. Twenty-seven morphologically distinct bacterial isolates were identified by partial 16S rRNA gene sequencing and their various genetic diversity was characterized according to their phylogenetic affiliations. Based on the molecular identification, Sporosarcina was the most abundant genus among all the ureolytic isolates, while the rest belonged to Pseudogracilibacillus and Bacillus genera. Analytical analysis on urease measurement showed that urease activities for the isolates ranged from 1·130 to 21·513 mol urea hydrolysed per minute, with isolate NB33 achieving the highest value and TSB4 achieving the lowest value. The estimated CaCO3 precipitates for the isolates ranged from 4·04 to 17·26 mg ml-1 , with isolate NB30 achieving the highest value and TSB20 achieving the lowest value. The findings in this study demonstrated that the ureolytic bacteria from limestone caves are promising bio-calcifying agents. SIGNIFICANCE AND IMPACT OF THE STUDY: Ureolytic bacteria continues to play an important role as microbial tools used in geotechnical engineering for soil biocalcification. Microbial strains with the ability to produce urease enzyme and induce calcium carbonate mineral are often isolated from soil, water and sludge samples. However, screening for these essential microbes from extreme regions such as caves are rarely investigated. In this study, native bacteria which were isolated from limestone cave samples are identified and characterized. The findings suggested that these ureolytic bacterial isolates have the potential to serve as suitable alternative microbial agents for soil strengthening and stabilization.
  10. Wong C, Tan LT, Mujahid A, Lihan S, Wee JLS, Ting LF, et al.
    Lett Appl Microbiol, 2018 Oct;67(4):384-391.
    PMID: 29998586 DOI: 10.1111/lam.13049
    Copper (Cu) tolerance was observed by endophytic fungi isolated from the carnivorous plant Nepenthes ampullaria (collected at an anthropogenically affected site, Kuching city; and a pristine site; Heart of Borneo). The fungal isolates, capable of tolerating Cu up to 1000 ppm (11 isolates in total), were identified through molecular method [internal transcribed spacer 4+5 (ITS4+5); ITS1+NL4; β-tubulin region using Bt2a + Bt2b], and all of them grouped with Diaporthe, Nigrospora, and Xylaria. A Cu biosorption study was then carried out using live and dead biomass of the 11 fungal isolates. The highest biosorption capacity of using live biomass was achieved by fungal isolates Xylaria sp. NA40 (73·26 ± 1·61 mg Cu per g biomass) and Diaporthe sp. NA41 (72·65 ± 2·23 mg Cu per g biomass), NA27 (59·81 ± 1·15 mg Cu per g biomass) and NA28 (56·85 ± 4·23 mg Cu per g biomass). The fungal isolate Diaporthe sp. NA41 also achieved the highest biosorption capacity of 59·33 ± 0·15 mg g-1 using dead biomass. The living biomass possessed a better biosorption capacity than the dead biomass (P 
  11. Tan HS, Yan P, Agustie HA, Loh HS, Rayamajhi N, Fang CM
    Lett Appl Microbiol, 2023 Jan 23;76(1).
    PMID: 36688778 DOI: 10.1093/lambio/ovac044
    Extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (AmpCs)-producing Enterobacteriaceae have been increasingly reported and imposing significant threat to public. Livestock production industry might be the important source for clinically important ESBL-producing Enterobacteriaceae. This study aims to investigate the resistance profile, phenotypic ESBL production, beta-lactamase genes, virulence factors, and plasmid replicon types among 59 Enterobacteriaceae strains isolated from poultry faecal samples in Malaysia's commercial poultry farm. There were 38.7% and 32.3% of Escherichia coli resistant to cefotaxime and cefoxitin, respectively, while Klebsiellaspp. demonstrated resistance rate of 52.6% to both mentioned antimicrobials. Majority of the E. coli isolates carried blaTEM and blaCMY-2 group. blaSHV was the most prevalent gene detected in Klebsiellaspp., followed by blaDHA and blaTEM. Resistance to extended spectrum cephalosporin in our isolates was primarily mediated by plasmid mediated AmpC beta-lactamase such as CMY-2 group and DHA enzyme. The CTX-M genes were found in two ESBL-producing E. coli. IncF, IncI1, and IncN plasmids were most frequently detected in E. coli and Klebsiellaspp. The virulence factor, including EAST1 and pAA were identified at low frequency. This study highlights the poultry as a reservoir of resistance and virulence determinants and prevalence of plasmids in Enterobacteriaceae might drive their dissemination.
  12. Nooraee SE, Alimon AR, Ho YW, Abdullah N
    Lett Appl Microbiol, 2010 Jun 1;50(6):578-84.
    PMID: 20406377 DOI: 10.1111/j.1472-765X.2010.02836.x
    The aim of this study was to find suitable yeast isolates as potential microbial feed additives for ruminants.
  13. Yoke-Kqueen C, Learn-Han L, Noorzaleha AS, Son R, Sabrina S, Jiun-Horng S, et al.
    Lett Appl Microbiol, 2008 Mar;46(3):318-24.
    PMID: 18179445 DOI: 10.1111/j.1472-765X.2007.02311.x
    The aims of this communication were to study characterization of serogroups among Salmonella isolates and the relationship of antimicrobial resistance to serogroups. Multiple antimicrobial resistance (MAR) was performed on 189 Salmonella enterica isolates associated with 38 different serovars that were recovered from poultry and four types of indigenous vegetables.
  14. Loh FK, Nathan S, Chow SC, Fang CM
    Lett Appl Microbiol, 2022 Feb 09.
    PMID: 35138654 DOI: 10.1111/lam.13669
    The genetic fusion of cytolysin A (clyA) to heterologous antigen expressed in live Salmonella vector demonstrated efficient translocation into periplasmic space and extracellular medium. Accumulating evidence has shown that clyA-mediated antigen delivery improved growth fitness and enhanced immunogenicity of live vector vaccine, but the factors influencing this protein exportation has not been investigated. In this study, Toxoplasma gondii antigen fused at C-terminal of clyA protein was expressed in live S. Typhi vector via both plasmid and chromosomal-based expressions. The bivalent strains showed comparable growth rates as monovalent strains, but in varies antigen exportation efficiency. ClyA-fusion antigen with positive charges was translocated to the extracellular spaces, whereas those with negative charges were retained in the cytoplasm. Furthermore, excessive cellular resources expenditure on antigen expression, especially antigen with larger size, could limit the clyA-fusion antigen exportation, resulting in undesirable metabolic burden that eventually affects the growth fitness. Altogether, the present work indicates potential linkage of factors mainly on antigen properties and expression platforms that may affect clyA-mediated antigen delivery to enhance the growth fitness of live vector strain.
  15. Omoregie AI, Muda K, Ngu LH
    Lett Appl Microbiol, 2022 Jan 14.
    PMID: 35032053 DOI: 10.1111/lam.13652
    Microbially induced carbonate precipitation (MICP) is a process that hydrolysis urea by microbial urease to fill the pore spaces of soil with induced calcium carbonate (CaCO3 ) precipitates, which eventually results in improved or solidified soil. This research explored the possibility of using dairy manure pellets (DMP) and palm oil mill effluent (POME) as alternative nutrient sources for Sporosarcina pasteurii cultivation and CaCO3 bioprecipitation. Different concentrations (20-80 g l-1 ) of DMP and POME were used to propagate the cells of S. pasteurii under laboratory conditions. The measured CaCO3 contents for MICP soil specimens that were treated with bacterial cultures grown in DMP medium (60%, w/v) was 15·30 ± 0·04 g ml-1 and POME medium (40%, v/v) was 15·49 ± 0·05 g ml-1 after 21 days curing. The scanning electron microscopy showed that soil treated with DMP had rhombohedral structure-like crystals with smooth surfaces, whilst that of POME entailed ring-like cubical formation with rough surfaces Electron dispersive X-ray analysis was able to identify a high mass percentage of chemical element compositions (Ca, C and O), whilst spectrum from Fourier-transform infrared spectroscopy confirmed the vibration peak intensities for CaCO3 . Atomic force microscopy further showed clear topographical differences on the crystal surface structures that were formed around the MICP treated soil samples. These nutrient sources (DMP and POME) showed encouraging potential cultivation mediums to address high costs related to bacterial cultivation and biocementation treatment.
  16. Norsyahida A, Rahmah N, Ahmad RM
    Lett Appl Microbiol, 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
  17. Kiang WS, Bhat R, Rosma A, Cheng LH
    Lett Appl Microbiol, 2013 Apr;56(4):251-7.
    PMID: 23278854 DOI: 10.1111/lam.12042
    In this study, the effects of thermosonication and thermal treatment on Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice were investigated at 50 and 60°C. Besides, nonlethal injury of Salm. Enteritidis after both treatments was also examined. The highest inactivation was attained with thermosonication at 60°C. The inactivation rate was different for both pathogens, and Salm. Enteritidis was found to be more sensitive to thermosonication than E. coli O157:H7. Salmonella Enteritidis was recovered in all treated samples, except those subjected to more than 5-min thermosonication at 60°C. It was found that the introduction of high-intensity ultrasound enhanced the inactivation of pathogens compared to thermal treatment alone. On the other hand, Salm. Enteritidis was detected in a number of samples following incubation in universal pre-enrichment broth, but no growth was detected after incubation in mango juice.
  18. Vejan P, Abdullah R, Khadiran T, Ismail S
    Lett Appl Microbiol, 2019 Jan;68(1):56-63.
    PMID: 30339728 DOI: 10.1111/lam.13088
    Sustainable crop production for a rapidly growing human population is one of the current challenges faced by the agricultural sector. However, many of the chemical agents used in agriculture can be hazardous to humans, non-targeted organism and environment. Plant growth promoting rhizobacteria have demonstrated a role in promoting plant growth and health under various stress conditions including disease. Unfortunately, bacterial viability degrades due to temperature and other environmental factors (Bashan et al., Plant Soil 378: 1-33, 2014). Encapsulation of bacteria into core-shell biopolymers is one of the promising techniques to overcome the problem. This study deals with the encapsulation of Bacillus salmalaya 139SI using simple double coating biopolymer technique which consist of brown rice protein/alginate and 0·5% low molecular weight chitosan of pH 4 and 6. The influence of biopolymer to bacteria mass ratio and the chitosan pH on the encapsulation process, physic-chemical, morphology and bioactivity properties of encapsulated B. salmalaya 139SI have been studied systematically. Based on the analysis of physico-chemical, morphology and bioactivity properties, B. salmalaya 139S1 encapsulated using double coating encapsulation technology has promising viability pre- and postfreeze-drying with excellent encapsulation yields of 99·7 and 89·3% respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The need of a simple yet effective way of encapsulating plant growth promoting rhizobacteria is crucial to further improve their benefits to global sustainable agriculture practice. Effective encapsulation allows for protection, controlled release and function of the micro-organism, as well as providing a longer shelf life for the product. This research report offers an innovative yet simple way of encapsulating using double coating technology with environmentally friendly biopolymers that could degrade and provide nutrients when in soil. Importantly, the bioactivity of the bacteria is maintained upon encapsulation.
  19. Noh NA, Salleh SM, Yahya AR
    Lett Appl Microbiol, 2014 Jun;58(6):617-23.
    PMID: 24698293 DOI: 10.1111/lam.12236
    A fed-batch strategy was established based on the maximum substrate uptake rate (MSUR) of Pseudomonas aeruginosa USM-AR2 grown in diesel to produce rhamnolipid. This strategy matches the substrate feed rates with the substrate demand based on the real-time measurements of dissolved oxygen (DO). The MSUR was estimated by determining the time required for consumption of a known amount of diesel. The MSUR trend paralleled the biomass profile of Ps. aeruginosa USM-AR2, where the MSUR increased throughout the exponential phase indicating active substrate utilization and then decreased when cells entered stationary phase. Rhamnolipid yield on diesel was enhanced from 0·047 (g/g) in batch to 0·110 (g/g) in pulse-pause fed-batch and 0·123 (g/g) in MSUR fed-batch. Rhamnolipid yield on biomass was also improved from 0·421 (g/g) in batch, 3·098 (g/g) in pulse-pause fed-batch to 3·471 (g/g) using MSUR-based strategy. Volumetric productivity increased from 0·029 g l(-1) h(-1) in batch, 0·054 g l(-1) h(-1) in pulse-pause fed-batch to 0·076 g l(-1) h(-1) in MSUR fed-batch.
  20. Raha AR, Chang LY, Sipat A, Yusoff K, Haryanti T
    Lett Appl Microbiol, 2006 Mar;42(3):210-4.
    PMID: 16478506
    The aim of the study is to evaluate whether xylanase can be used as a potential reporter gene for cloning and expression studies in Lactococcus.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links