Displaying publications 1 - 20 of 32 in total

  1. Noh NA, Salleh SM, Yahya AR
    Lett. Appl. Microbiol., 2014 Jun;58(6):617-23.
    PMID: 24698293 DOI: 10.1111/lam.12236
    A fed-batch strategy was established based on the maximum substrate uptake rate (MSUR) of Pseudomonas aeruginosa USM-AR2 grown in diesel to produce rhamnolipid. This strategy matches the substrate feed rates with the substrate demand based on the real-time measurements of dissolved oxygen (DO). The MSUR was estimated by determining the time required for consumption of a known amount of diesel. The MSUR trend paralleled the biomass profile of Ps. aeruginosa USM-AR2, where the MSUR increased throughout the exponential phase indicating active substrate utilization and then decreased when cells entered stationary phase. Rhamnolipid yield on diesel was enhanced from 0·047 (g/g) in batch to 0·110 (g/g) in pulse-pause fed-batch and 0·123 (g/g) in MSUR fed-batch. Rhamnolipid yield on biomass was also improved from 0·421 (g/g) in batch, 3·098 (g/g) in pulse-pause fed-batch to 3·471 (g/g) using MSUR-based strategy. Volumetric productivity increased from 0·029 g l(-1) h(-1) in batch, 0·054 g l(-1) h(-1) in pulse-pause fed-batch to 0·076 g l(-1) h(-1) in MSUR fed-batch.
  2. Kiang WS, Bhat R, Rosma A, Cheng LH
    Lett. Appl. Microbiol., 2013 Apr;56(4):251-7.
    PMID: 23278854 DOI: 10.1111/lam.12042
    In this study, the effects of thermosonication and thermal treatment on Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice were investigated at 50 and 60°C. Besides, nonlethal injury of Salm. Enteritidis after both treatments was also examined. The highest inactivation was attained with thermosonication at 60°C. The inactivation rate was different for both pathogens, and Salm. Enteritidis was found to be more sensitive to thermosonication than E. coli O157:H7. Salmonella Enteritidis was recovered in all treated samples, except those subjected to more than 5-min thermosonication at 60°C. It was found that the introduction of high-intensity ultrasound enhanced the inactivation of pathogens compared to thermal treatment alone. On the other hand, Salm. Enteritidis was detected in a number of samples following incubation in universal pre-enrichment broth, but no growth was detected after incubation in mango juice.
  3. Voon WW, Rukayadi Y, Meor Hussin AS
    Lett. Appl. Microbiol., 2016 May;62(5):428-33.
    PMID: 27002476 DOI: 10.1111/lam.12568
    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively.
  4. Jong BC, Liew PW, Lebai Juri M, Kim BH, Mohd Dzomir AZ, Leo KW, et al.
    Lett. Appl. Microbiol., 2011 Dec;53(6):660-7.
    PMID: 21967346 DOI: 10.1111/j.1472-765X.2011.03159.x
    To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell.
  5. Tan YN, Ayob MK, Osman MA, Matthews KR
    Lett. Appl. Microbiol., 2011 Nov;53(5):509-17.
    PMID: 21848644 DOI: 10.1111/j.1472-765X.2011.03137.x
    The goal of this study was to determine inhibitory effect of palm kernel expeller (PKE) peptides of different degree of hydrolysis (DH %) against spore-forming bacteria Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophillus, Bacillus subtilis, Bacillus thuringiensis, Clostridium perfringens; and non-spore-forming bacteria Escherichia coli, Lisinibacillus sphaericus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium and Staphylococcus aureus.
  6. Tang JY, Nishibuchi M, Nakaguchi Y, Ghazali FM, Saleha AA, Son R
    Lett. Appl. Microbiol., 2011 Jun;52(6):581-8.
    PMID: 21375548 DOI: 10.1111/j.1472-765X.2011.03039.x
    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE).
  7. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K
    Lett. Appl. Microbiol., 2010 Dec;51(6):658-64.
    PMID: 20973806 DOI: 10.1111/j.1472-765X.2010.02950.x
    A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed.
  8. Norsyahida A, Rahmah N, Ahmad RM
    Lett. Appl. Microbiol., 2009 Nov;49(5):544-50.
    PMID: 19832937 DOI: 10.1111/j.1472-765X.2009.02694.x
    To investigate the effects of feeding and induction strategies on the production of BmR1 recombinant antigen.
  9. Meimandipour A, Shuhaimi M, Hair-Bejo M, Azhar K, Kabeir BM, Rasti B, et al.
    Lett. Appl. Microbiol., 2009 Oct;49(4):415-20.
    PMID: 19725887 DOI: 10.1111/j.1472-765X.2009.02674.x
    To assess the probiotic effects of Lactobacillus agilis JCM 1048 and L. salivarius ssp. salicinius JCM 1230 and the pH on the cecal microflora of chicken and metabolic end products.
  10. Nooraee SE, Alimon AR, Ho YW, Abdullah N
    Lett. Appl. Microbiol., 2010 Jun 1;50(6):578-84.
    PMID: 20406377 DOI: 10.1111/j.1472-765X.2010.02836.x
    The aim of this study was to find suitable yeast isolates as potential microbial feed additives for ruminants.
  11. Fandi KG, Ghazali HM, Yazid AM, Raha AR
    Lett. Appl. Microbiol., 2001 Apr;32(4):235-9.
    PMID: 11298932
    AIMS: The key enzyme in the fructose-6-phosphate shunt in bifidobacteria, Fructose-6-phosphate phosphoketolase (F6PPK; E.C., was purified to electrophoretic homogeneity for the first time from Bifidobacterium longum (BB536).

    METHODS AND RESULTS: A three-step procedure comprising acetone fractionation followed by fast protein liquid chromatography (FPLC) resulted in a 30-fold purification. The purified enzyme had a molecular mass of 300 +/- 5 kDa as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 93 +/- 1 kDa and 59 +/- 0.5 kDa, as determined by SDS-PAGE.

    CONCLUSION: The deduced N-terminal amino acid sequences of the two subunits revealed no significant similarity between them and other proteins when compared to the data bases of EMBL and SWISS-PROT, indicating that this could be the first report on N-terminal amino acid sequence of F6PPK.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The data from this study will be used to design oligonucleotide probe specific for bifidobacteria and to study the gene encoded F6PPK.

  12. Lan GQ, Abdullah N, Jalaludin S, Ho Y
    Lett. Appl. Microbiol., 2002;35(2):157-61.
    PMID: 12100593
    The effects of different carbon and nitrogen sources on phytase production by Mitsuokella jalaludinii were evaluated and the optimization of rice bran (RB) and soybean milk (SM) concentrations in the medium for phytase production was also determined.
  13. Azad SA, Vikineswary S, Ramachandran KB, Chong VC
    Lett. Appl. Microbiol., 2001 Oct;33(4):264-8.
    PMID: 11559398
    AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand.

    METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth.

    CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.

  14. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett. Appl. Microbiol., 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
  15. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA
    Lett. Appl. Microbiol., 2018 May;66(5):416-426.
    PMID: 29457249 DOI: 10.1111/lam.12867
    Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram-positive (Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat-inactivation at 95°C for 10 min had no effect on conditioned media-mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.

  16. Tan TS, Syed Hassan S, Yap WB
    Lett. Appl. Microbiol., 2017 Jun;64(6):446-451.
    PMID: 28370088 DOI: 10.1111/lam.12738
    The study aimed to construct a recombinant Lactobacillus casei expressing the nonstructural (NS) 1 protein of influenza A virus H5N1 on its cell wall. The NS1 gene was first amplified and fused to the pSGANC332 expression plasmid. The NS1 protein expression was carried out by Lact. casei strain C1. PCR screening and DNA sequencing confirmed the presence of recombinant pSG-NS1-ANC332 plasmid in Lact. casei. The plasmid was stably maintained (98·94 ± 1·65%) by the bacterium within the first 20 generations without selective pressure. The NS1 was expressed as a 49-kDa protein in association with the anchoring peptide. The yield was 1·325 ± 0·065 μg mg(-1) of bacterial cells. Lactobacillus casei expressing the NS1 on its cell wall was red-fluorescently stained, but the staining was not observed on Lact. casei carrying the empty pSGANC332. The results implied that Lact. casei strain C1 is a promising host for the expression of surface-bound NS1 protein using the pSGANC332 expression plasmid.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has demonstrated, for the first time, the expression of nonstructural 1 (NS1) protein of influenza A virus H5N1 on the cell wall of Lactobacillus casei using the pSGANC332 expression plasmid. Display of NS1 protein on the bacterial cell wall was evident under an immunofluorescence microscopic observation. Lactobacillus casei carrying the NS1 protein could be developed into a universal oral influenza vaccine since the NS1 is highly conserved among influenza viruses.

  17. Wong C, Tan LT, Mujahid A, Lihan S, Wee JLS, Ting LF, et al.
    Lett. Appl. Microbiol., 2018 Oct;67(4):384-391.
    PMID: 29998586 DOI: 10.1111/lam.13049
    Copper (Cu) tolerance was observed by endophytic fungi isolated from the carnivorous plant Nepenthes ampullaria (collected at an anthropogenically affected site, Kuching city; and a pristine site; Heart of Borneo). The fungal isolates, capable of tolerating Cu up to 1000 ppm (11 isolates in total), were identified through molecular method [internal transcribed spacer 4+5 (ITS4+5); ITS1+NL4; β-tubulin region using Bt2a + Bt2b], and all of them grouped with Diaporthe, Nigrospora, and Xylaria. A Cu biosorption study was then carried out using live and dead biomass of the 11 fungal isolates. The highest biosorption capacity of using live biomass was achieved by fungal isolates Xylaria sp. NA40 (73·26 ± 1·61 mg Cu per g biomass) and Diaporthe sp. NA41 (72·65 ± 2·23 mg Cu per g biomass), NA27 (59·81 ± 1·15 mg Cu per g biomass) and NA28 (56·85 ± 4·23 mg Cu per g biomass). The fungal isolate Diaporthe sp. NA41 also achieved the highest biosorption capacity of 59·33 ± 0·15 mg g-1 using dead biomass. The living biomass possessed a better biosorption capacity than the dead biomass (P 
  18. Vejan P, Abdullah R, Khadiran T, Ismail S
    Lett. Appl. Microbiol., 2019 Jan;68(1):56-63.
    PMID: 30339728 DOI: 10.1111/lam.13088
    Sustainable crop production for a rapidly growing human population is one of the current challenges faced by the agricultural sector. However, many of the chemical agents used in agriculture can be hazardous to humans, non-targeted organism and environment. Plant growth promoting rhizobacteria have demonstrated a role in promoting plant growth and health under various stress conditions including disease. Unfortunately, bacterial viability degrades due to temperature and other environmental factors (Bashan et al., Plant Soil 378: 1-33, 2014). Encapsulation of bacteria into core-shell biopolymers is one of the promising techniques to overcome the problem. This study deals with the encapsulation of Bacillus salmalaya 139SI using simple double coating biopolymer technique which consist of brown rice protein/alginate and 0·5% low molecular weight chitosan of pH 4 and 6. The influence of biopolymer to bacteria mass ratio and the chitosan pH on the encapsulation process, physic-chemical, morphology and bioactivity properties of encapsulated B. salmalaya 139SI have been studied systematically. Based on the analysis of physico-chemical, morphology and bioactivity properties, B. salmalaya 139S1 encapsulated using double coating encapsulation technology has promising viability pre- and postfreeze-drying with excellent encapsulation yields of 99·7 and 89·3% respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The need of a simple yet effective way of encapsulating plant growth promoting rhizobacteria is crucial to further improve their benefits to global sustainable agriculture practice. Effective encapsulation allows for protection, controlled release and function of the micro-organism, as well as providing a longer shelf life for the product. This research report offers an innovative yet simple way of encapsulating using double coating technology with environmentally friendly biopolymers that could degrade and provide nutrients when in soil. Importantly, the bioactivity of the bacteria is maintained upon encapsulation.
  19. Jin LZ, Ho YW, Abdullah N, Jalaludin S
    Lett. Appl. Microbiol., 1998 Sep;27(3):183-5.
    PMID: 9750324
    Twelve Lactobacillus strains isolated from chicken intestine were used to investigate acid and bile tolerance in vitro. Ten out of the 12 strains were slightly affected by 0.3% bile salts, showing a delay of growth (d) of 0.6-37.2 min compared with growth in control cultures. Two strains were not affected by the bile salts. Of the 12 strains, seven could be arbitrarily classified as resistant (d < 15 min) and five as tolerant (15 min < d < or = 40 min). Lactobacillus strains from the caecum showed better tolerance to acid than those from the ileum. Generally, the survival of the ileal strains was very low at pH 1.0 and 2.0, and moderate at pH 3.0. In contrast, caecal Lactobacillus strains could survive at pH 1.0 for up to 2 h of incubation; growth was moderate at pH 2.0 and good at pH 3.0 and 4.0.
  20. Son R, Nimita F, Rusul G, Nasreldin E, Samuel L, Nishibuchi M
    Lett. Appl. Microbiol., 1999 Aug;29(2):118-22.
    PMID: 10499300
    Nineteen strains of vancomycin-resistant Enterococcus faecium isolated from 10 of 75 (13.3%) tenderloin beef samples were examined for resistance to selected antibiotics, presence of plasmids, and genetic diversity by random amplification of polymorphic DNA analysis. All strains showed multiple resistant to the antibiotics tested. Multiple antibiotic indexing of the vancomycin-resistant E. faecium strains showed that all (100%) originated from high risk contamination environments where antibiotics were often used. Plasmids ranging in size from 1.5 to 36 megadalton were detected in 15 of 19 (79%) strains. Thus, three plasmid profiles and eight antibiotypes were observed among the E. faecium strains. A high degree of polymorphism was obtained by combining the results of the two primers used; with the 19 E. faecium strains being differentiated into 19 RAPD-types. These preliminary results suggest that RAPD-PCR has application for epidemiologic studies and that resistance patterns and plasmid profiling could be used as an adjunct to RAPD for the typing of E. faecium in the study area.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links