Displaying publications 1 - 20 of 129 in total

Abstract:
Sort:
  1. Andersen F, Douglas NM, Bustos D, Galappaththy G, Qi G, Hsiang MS, et al.
    Malar J, 2011 May 18;10:131.
    PMID: 21586174 DOI: 10.1186/1475-2875-10-131
    BACKGROUND: Quantitative data are lacking on published malaria research. The purpose of the study is to characterize trends in malaria-related literature from 1990 to 2009 in 11 Asian-Pacific countries that are committed to malaria elimination as a national goal.

    METHODS: A systematic search was conducted for articles published from January 1990 to December 2009 in PubMed/MEDLINE using terms for malaria and 11 target countries (Bhutan, China, North Korea, Indonesia, Malaysia, Philippines, Solomon Islands, South Korea, Sri Lanka, Thailand and Vanuatu). The references were collated and categorized according to subject, Plasmodium species, and whether they contained original or derivative data.

    RESULTS: 2,700 articles published between 1990 and 2009 related to malaria in the target countries. The annual output of malaria-related papers increased linearly whereas the overall biomedical output from these countries grew exponentially. The percentage of malaria-related publications was nearly 3% (111/3741) of all biomedical publications in 1992 and decreased to less than 1% (118/12171; p < 0.001) in 2009. Thailand had the highest absolute output of malaria-related papers (n = 1211), followed by China (n = 609) and Indonesia (n = 346). Solomon Islands and Vanuatu had lower absolute numbers of publications, but both countries had the highest number of publications per capita (1.3 and 2.5 papers/1,000 population). The largest percentage of papers concerned the epidemiology and control of malaria (53%) followed by studies of drugs and drug resistance (47%). There was an increase in the proportion of articles relating to epidemiology, entomology, biology, molecular biology, pathophysiology and diagnostics from the first to the second decade, whereas the percentage of papers on drugs, clinical aspects of malaria, immunology, and social sciences decreased.

    CONCLUSIONS: The proportion of malaria-related publications out of the overall biomedical output from the 11 target Asian-Pacific countries is decreasing. The discovery and evaluation of new, safe and effective drugs and vaccines is paramount. In addition the elimination of malaria will require operational research to implement and scale up interventions.

  2. Ahmed MA, Fong MY, Lau YL, Yusof R
    Malar J, 2016;15(1):241.
    PMID: 27118390 DOI: 10.1186/s12936-016-1294-6
    The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene.
  3. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
  4. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

  5. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

  6. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
  7. Naing C, Htet NH, Aye SN, Aung HH, Tanner M, Whittaker MA
    Malar J, 2022 Feb 16;21(1):50.
    PMID: 35172833 DOI: 10.1186/s12936-022-04082-0
    BACKGROUND: Achieving malaria elimination requires the targeting of the human reservoir of infection, including those patients with asymptomatic infection. The objective was to synthesise evidence on the accuracy of the rapid-onsite diagnostic tests (RDTs) and microscopy for the detection of asymptomatic malaria as part of the surveillance activities in Asian countries.

    METHODS: This was a meta-analysis of diagnostic test accuracy. Relevant studies that evaluated the diagnostic performance of RDTs and microscopy for detection of asymptomatic malaria were searched in health-related electronic databases. The methodological quality of the studies included was assessed using the QUADAS-2 tool.

    RESULTS: Ten studies assessing RDT and/or microscopy were identified. The diagnostic accuracies in all these studies were verified by PCR. Overall, the pooled sensitivities of RDT, as well as microscopy for detection of any malaria parasites in asymptomatic participants, were low, while their pooled specificities were almost ideal. For the detection of Plasmodium falciparum, pooled sensitivity by RDT (59%, 95%CI:16-91%) or microscopy (55%, 95%CI: 25-82%) were almost comparable. For detection of Plasmodium vivax, pooled sensitivity of RDT (51%, 95% CI:7-94%) had also the comparable accuracy of microscopy (54%, 95%CI,11-92%). Of note are the wide range of sensitivity and specificity.

    CONCLUSION: The findings of this meta-analysis suggest that RDTs and microscopy have limited sensitivity and are inappropriate for the detection of asymptomatic Plasmodium infections. Other methods including a combination of PCR-based strategies, Loop-Mediated Isothermal Amplification (LAMP) technique must be considered to target these infections, in order to achieve malaria elimination. However, more data is needed for the wide acceptance and feasibility of these approaches. Studies to explore the role of asymptomatic and sub-patent infections in the transmission of malaria are of critical importance and are recommended.

  8. Moraes Barros RR, Thawnashom K, Gibson TJ, Armistead JS, Caleon RL, Kaneko M, et al.
    Malar J, 2021 Jun 05;20(1):247.
    PMID: 34090438 DOI: 10.1186/s12936-021-03773-4
    BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites.

    METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey.

    RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method.

    CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.

  9. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Malar J, 2019 Mar 08;18(1):66.
    PMID: 30849978 DOI: 10.1186/s12936-019-2693-2
    Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
  10. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

  11. Chua CLL, Ng IMJ, Yap BJM, Teo A
    Malar J, 2021 Jul 16;20(1):319.
    PMID: 34271941 DOI: 10.1186/s12936-021-03849-1
    There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
  12. Smith Gueye C, Newby G, Gosling RD, Whittaker MA, Chandramohan D, Slutsker L, et al.
    Malar J, 2016;15:2.
    PMID: 26727923 DOI: 10.1186/s12936-015-1054-z
    There has been progress towards malaria elimination in the last decade. In response, WHO launched the Global Technical Strategy (GTS), in which vector surveillance and control play important roles. Country experiences in the Eliminating Malaria Case Study Series were reviewed to identify success factors on the road to elimination using a cross-case study analytic approach.
  13. Naing C, Whittaker MA, Tanner M
    Malar J, 2018 Nov 16;17(1):430.
    PMID: 30445959 DOI: 10.1186/s12936-018-2562-4
    BACKGROUND: Malaria cases among mobile and migrant populations (MMPs) represent a large and important reservoir for transmission, if undetected or untreated. The objectives of this review were to identify which intersectoral actions have been taken and how they are applied to interventions targeted at the MMPs and also to assess the effect of interventions targeted to these special groups of population.

    RESULTS: A total of 36 studies met the inclusion criteria for this review. Numerous stakeholders were identified as involved in the intersectoral actions to defeat malaria amongst MMPs. Almost all studies discussed the involvement of Ministry of Health/Public Health (MOH/MOPH). The most frequently assessed intervention among the studies that were included was the coverage and utilization of insecticide-treated nets as personal protective measures (40.5%), followed by the intervention of early diagnoses and treatment of malaria (33.3%), the surveillance and response activities (13.9%) and the behaviour change communication (8.3%). There is a dearth of information on how these stakeholders shared roles and responsibilities for implementation, and about the channels of communication between-and-within the partners and with the MOH/MOPH. Despite limited details in the studies, the intermediate outcomes showed some evidence that the intersectoral collaborations contributed to improvement in knowledge about malaria, initiation and promotion of bed nets utilization, increased access to diagnosis and treatment in a surveillance context and contributed towards a reduction in malaria transmission. Overall, a high proportion of the targeted MMPs was equipped with correct knowledge about malaria transmission (70%, 95% CI 57-83%). Interventions targeting the use of bed nets utilization were two times more likely to reduce malaria incidence amongst the targeted MMPs (summary OR 2.01, 95% CI 1.43-2.6) than the non-users. The various intersectoral actions were often more vertically organized and not fully integrated in a systemic way within a given country or sub-national administrative setting.

    CONCLUSION: Findings suggest that interventions supported by the multiple stakeholders had a significant impact on the reduction of malaria transmission amongst the targeted MMPs. Well-designed studies from different countries are recommended to robustly assess the role of intersectoral interventions targeted to MMPs and their impact on the reduction of transmission.

  14. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Surin J
    Malar J, 2012;11:251.
    PMID: 22853645 DOI: 10.1186/1475-2875-11-251
    Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance.
  15. Atroosh WM, Al-Mekhlafi HM, Snounou G, Al-Jasari A, Sady H, Nasr NA, et al.
    Malar J, 2016 05 27;15(1):295.
    PMID: 27234587 DOI: 10.1186/s12936-016-1344-0
    BACKGROUND: In Yemen, artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used as first-line treatment for uncomplicated falciparum malaria, which accounts for about 99 % of malaria cases. There is evidence that resistance to SP is increasing, with potential negative impact on efficacy, and in particular on curbing transmission. This study aims: (a) to evaluate the therapeutic efficacy of AS + SP treatment for uncomplicated falciparum malaria in Yemen; (b) to investigate the frequency of mutations in Plasmodium falciparum genes associated with resistance to AS (Kelch 13 propeller domain, pfK13) and SP (dihydrofolate reductase, pfdhfr, and dihydropteroate synthase, pfdhps); and (c) to assess the adequacy of this ACT to clear gametocytes.

    METHODS: A 28-day in vivo evaluation of the clinical and parasitological response to three-day course of AS + SP was carried out in two areas of high endemicity (Hodeidah and Al-Mahwit provinces, Tehama region) in Yemen according to standard WHO protocol 2009. Clinical and parasitological indices were monitored over a 28-day follow-up, and the outcome was PCR-corrected. The frequencies of mutations in the pfdhfr, pfdhps, and pfK13 genes were obtained by sequencing following amplification.

    RESULTS: Eighty-six patients completed the study, with a cure rate of 96.5 % (94.2 % PCR-uncorrected). Whereas four (4.7 %) patients still showed parasitaemia on day 2 post-treatment, all were found negative for asexual malaria stages on days 3 and 7. The efficacy of gametocyte clearance was poor (14.5, 42.5 and 86.0 % on days 7, 14 and 28, respectively), with gametocytes persisting throughout the study in some patients. All the isolates sequenced had the pfk13 propeller domain wild-type allele, and mutations associated with SP failure were observed only for pfdhfr with the double mutation (S108N + N51I) found in 65.4 % of the isolates sequenced.

    CONCLUSION: In Yemen, AS + SP therapy remains effective for the treatment of uncomplicated falciparum malaria. Mutations were not detected in pfk13 or pfdhps, though double mutations were observed for pfdhfr. The observed persistent gametocytaemia re-enforces calls to add a single dose primaquine to this ACT in order to minimizes the potential for transmission and enhance regional efforts to eliminate malaria.

  16. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

  17. Foster D, Cox-Singh J, Mohamad DS, Krishna S, Chin PP, Singh B
    Malar J, 2014;13:60.
    PMID: 24548805 DOI: 10.1186/1475-2875-13-60
    Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated.
  18. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
  19. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
  20. Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B
    Malar J, 2020 Oct 01;19(1):350.
    PMID: 33004070 DOI: 10.1186/s12936-020-03424-0
    BACKGROUND: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand.

    METHODS: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    RESULTS: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    CONCLUSIONS: The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links