Displaying publications 1 - 20 of 132 in total

Abstract:
Sort:
  1. Liew JW, Mahmud R, Tan LH, Lau YL
    Malar J, 2016;15:8.
    PMID: 26738724 DOI: 10.1186/s12936-015-1070-z
    Plasmodium ovale is rare and not exactly known to be autochthonous in Malaysia. There are two distinct forms of the parasite, namely P. ovale curtisi (classic form) and P. ovale wallikeri (variant form). Here, the first sequence confirmed case of an imported P. ovale wallikeri infection in Malaysia is presented. Microscopy found Plasmodium parasites with morphology similar to P. ovale or Plasmodium vivax in the blood films. Further confirmation using polymerase chain reaction (PCR) targeting the small-subunit rRNA gene of the parasite was unsuccessful. Genus-specific PCR was then performed and the product was sequenced and analysed. Sequence analyses confirmed the aetiological agent as P. ovale wallikeri. New species-specific primers (rOVA1v and rOVA2v) were employed and P. ovale wallikeri was finally confirmed. The findings highlight the need to look out for imported malaria infections in Malaysia and the importance of a constantly updated and validated diagnostic technique.
  2. Smith Gueye C, Newby G, Gosling RD, Whittaker MA, Chandramohan D, Slutsker L, et al.
    Malar J, 2016;15:2.
    PMID: 26727923 DOI: 10.1186/s12936-015-1054-z
    There has been progress towards malaria elimination in the last decade. In response, WHO launched the Global Technical Strategy (GTS), in which vector surveillance and control play important roles. Country experiences in the Eliminating Malaria Case Study Series were reviewed to identify success factors on the road to elimination using a cross-case study analytic approach.
  3. Bamaga OA, Mahdy MA, Lim YA
    Malar J, 2015;14:516.
    PMID: 26693691 DOI: 10.1186/s12936-015-1035-2
    Malaria in Yemen is mainly caused by Plasmodium falciparum and 25% of the population is at high risk. Sulfadoxine-pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether-lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen.
  4. William T, Jelip J, Menon J, Anderios F, Mohammad R, Awang Mohammad TA, et al.
    Malar J, 2014;13:390.
    PMID: 25272973 DOI: 10.1186/1475-2875-13-390
    While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain.
  5. Sulaiman H, Ismail MD, Jalalonmuhali M, Atiya N, Ponnampalavanar S
    Malar J, 2014;13:341.
    PMID: 25176417 DOI: 10.1186/1475-2875-13-341
    This case report describes a case of presumed acute myocardial infarction in a returned traveler who was later diagnosed to have severe malaria. Emergency coronary angiography was normal and subsequent peripheral blood film was positive for Plasmodium falciparum.
  6. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM
    Malar J, 2014;13:68.
    PMID: 24564912 DOI: 10.1186/1475-2875-13-68
    Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
  7. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, et al.
    Malar J, 2014;13:117.
    PMID: 24670242 DOI: 10.1186/1475-2875-13-117
    Drug resistance in Plasmodium falciparum is a major problem in malaria control especially along the Thai-Myanmar and Thai-Cambodia borders. To date, a few molecular markers have been identified for anti-malarial resistance in P. falciparum, including the P. falciparum chloroquine resistance transporter (pfcrt) and the P. falciparum multidrug resistance 1 (pfmdr1). However no information is available regarding the distribution pattern of these gene polymorphisms in the parasites from the Thai-Malaysia border. This study was conducted to compare the distribution pattern of the pfcrt and pfmdr1 polymorphisms in the parasites from the lower southern provinces, Thai-Malaysia border and the upper southern provinces, Thai-Myanmar border. In addition, in vitro sensitivities of anti-malarial drugs including chloroquine, mefloquine, quinine, and artesunate were determined.
  8. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
  9. Foster D, Cox-Singh J, Mohamad DS, Krishna S, Chin PP, Singh B
    Malar J, 2014;13:60.
    PMID: 24548805 DOI: 10.1186/1475-2875-13-60
    Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated.
  10. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar J, 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
  11. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
  12. Fatih FA, Staines HM, Siner A, Ahmed MA, Woon LC, Pasini EM, et al.
    Malar J, 2013;12:425.
    PMID: 24245918 DOI: 10.1186/1475-2875-12-425
    Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed.
  13. Anthony CN, Lau YL, Sum JS, Fong MY, Ariffin H, Zaw WL, et al.
    Malar J, 2013;12:308.
    PMID: 24007496 DOI: 10.1186/1475-2875-12-308
    Malaria may be a serious complication of blood transfusion due to the asymptomatic persistence of parasites in some donors. This case report highlights the transfusion-transmitted malaria of Plasmodium vivax in a child diagnosed with germ cell tumour. This child had received blood transfusion from three donors and a week later started developing malaria like symptoms. Nested PCR and sequencing confirmed that one of the three donors was infected with P. vivax and this was transmitted to the 12-year-old child. To the best of the authors' knowledge, this is the first reported transfusion-transmitted malaria case in Malaysia.
  14. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
  15. Tanizaki R, Ujiie M, Kato Y, Iwagami M, Hashimoto A, Kutsuna S, et al.
    Malar J, 2013;12:128.
    PMID: 23587117 DOI: 10.1186/1475-2875-12-128
    This is the first case of Plasmodium knowlesi infection in a Japanese traveller returning from Malaysia. In September 2012, a previously healthy 35-year-old Japanese man presented to National Center for Global Health and Medicine in Tokyo with a two-day history of daily fever, mild headaches and mild arthralgia. Malaria parasites were found in the Giemsa-stained thin blood smear, which showed band forms similar to Plasmodium malariae. Although a nested PCR showed the amplification of the primer of Plasmodium vivax and Plasmodium knowlesi, he was finally diagnosed with P. knowlesi mono-infection by DNA sequencing. He was treated with mefloquine, and recovered without any complications. DNA sequencing of the PCR products is indispensable to confirm P. knowlesi infection, however there is limited access to DNA sequencing procedures in endemic areas. The extent of P. knowlesi transmission in Asia has not been clearly defined. There is limited availability of diagnostic tests and routine surveillance system for reporting an accurate diagnosis in the Asian endemic regions. Thus, reporting accurately diagnosed cases of P. knowlesi infection in travellers would be important for assessing the true nature of this emerging human infection.
  16. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
  17. Lee WC, Chin PW, Lau YL, Chin LC, Fong MY, Yap CJ, et al.
    Malar J, 2013;12:88.
    PMID: 23496970 DOI: 10.1186/1475-2875-12-88
    Plasmodium knowlesi is a potentially life-threatening zoonotic malaria parasite due to its relatively short erythrocytic cycle. Microscopic identification of P. knowlesi is difficult, with "compacted parasite cytoplasm" being one of the important identifying keys. This report is about a case of hyperparasitaemic human P. knowlesi infection (27% parasitaemia) with atypical amoeboid morphology. A peninsular Malaysian was admitted to the hospital with malaria. He suffered anaemia and acute kidney function impairment. Microscopic examination, assisted by nested PCR and sequencing confirmed as P. knowlesi infection. With anti-malarial treatment and several medical interventions, patient survived and recovered. One-month medical follow-up was performed after recovery and no recrudescence was noted. This case report highlights the extreme hyperparasitaemic setting, the atypical morphology of P. knowlesi in the patient's erythrocytes, as well as the medical interventions involved in this successfully treated case.
  18. Parker D, Lerdprom R, Srisatjarak W, Yan G, Sattabongkot J, Wood J, et al.
    Malar J, 2012 Aug 21;11:290.
    PMID: 22908880 DOI: 10.1186/1475-2875-11-290
    BACKGROUND: Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand.

    METHODS: Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization's microtest (mark III) (between 1994 and 2002) and the histidine-rich protein-2 (HRP2)-based enzyme-linked immunosorbent assay (in 2010). Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences.

    RESULTS: There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar.

    CONCLUSIONS: Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued surveillance in Thailand, along with increased collaboration and surveillance across the entire Greater Mekong sub-region, is clearly warranted.

  19. Rajahram GS, Barber BE, William T, Menon J, Anstey NM, Yeo TW
    Malar J, 2012;11:284.
    PMID: 22905799 DOI: 10.1186/1475-2875-11-284
    The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory.
  20. Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong MY
    Malar J, 2012;11:213.
    PMID: 22727041
    The first natural infection of Plasmodium knowlesi in humans was recorded in 1965 in peninsular Malaysia. Extensive research was then conducted and it was postulated that it was a rare incident and that simian malaria will not be easily transmitted to humans. However, at the turn of the 21st century, knowlesi malaria was prevalent throughout Southeast Asia and is life threatening. Thus, a longitudinal study was initiated to determine the vectors, their seasonal variation and preference to humans and macaques.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links