Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Ye Q, Gao Y, Patel RJ, Cao B, Li A, Powell J, et al.
    Science, 2024 Apr 05;384(6691):26-28.
    PMID: 38574143 DOI: 10.1126/science.adp2180
  2. Meijaard E, Erman A, Ancrenaz M, Goossens B
    Science, 2024 Jan 19;383(6680):267.
    PMID: 38236988 DOI: 10.1126/science.adn3857
  3. Li X, Lam SS, Xia C, Zhong H, Sonne C
    Science, 2023 Dec;382(6674):1007.
    PMID: 38033061 DOI: 10.1126/science.adl6721
  4. Hoy ZX, Woon KS, Chin WC, Van Fan Y, Yoo SJ
    Science, 2023 Nov 17;382(6672):797-800.
    PMID: 37972189 DOI: 10.1126/science.adg3177
    No global analysis has considered the warming that could be averted through improved solid waste management and how much that could contribute to meeting the Paris Agreement's 1.5° and 2°C pathway goals or the terms of the Global Methane Pledge. With our estimated global solid waste generation of 2.56 to 3.33 billion tonnes by 2050, implementing abrupt technical and behavioral changes could result in a net-zero warming solid waste system relative to 2020, leading to 11 to 27 billion tonnes of carbon dioxide warming-equivalent emissions under the temperature limits. These changes, however, require accelerated adoption within 9 to 17 years (by 2033 to 2041) to align with the Global Methane Pledge. Rapidly reducing methane, carbon dioxide, and nitrous oxide emissions is necessary to maximize the short-term climate benefits and stop the ongoing temperature rise.
  5. Sonne C, Ciesielski TM, Jenssen BM, Lam SS, Zhong H, Dietz R
    Science, 2023 Aug 25;381(6660):843-844.
    PMID: 37616344 DOI: 10.1126/science.adj4244
  6. Heim AB, Bharani T, Konstantinides N, Powell JR, Srivastava S, Cao XE, et al.
    Science, 2023 Jul 14;381(6654):162-163.
    PMID: 37440643 DOI: 10.1126/science.adi8740
  7. Simpfendorfer CA, Heithaus MR, Heupel MR, MacNeil MA, Meekan M, Harvey E, et al.
    Science, 2023 Jun 16;380(6650):1155-1160.
    PMID: 37319199 DOI: 10.1126/science.ade4884
    A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.
  8. da Silva CFA, Virgüez E, Eker S, Zdenek CN, Bergh C, Gerarduzzi C, et al.
    Science, 2023 Apr 07;380(6640):30-32.
    PMID: 37023192 DOI: 10.1126/science.adh8182
  9. Sonne C, Bank MS, Jenssen BM, Cieseielski TM, Rinklebe J, Lam SS, et al.
    Science, 2023 Mar 03;379(6635):887-888.
    PMID: 36862788 DOI: 10.1126/science.adh0934
  10. Davidar P, Sharma R, de Silva S, Campos-Arceiz A, Goossens B, Puyravaud JP, et al.
    Science, 2023 Feb 24;379(6634):765.
    PMID: 36821683 DOI: 10.1126/science.adg7470
  11. Xia C, Lam SS, Zhong H, Fabbri E, Sonne C
    Science, 2022 Nov 25;378(6622):842.
    PMID: 36423283 DOI: 10.1126/science.ade9069
  12. Brooks CM, Ainley DG, Jacquet J, Chown SL, Pertierra LR, Francis E, et al.
    Science, 2022 Nov 04;378(6619):477-479.
    PMID: 36264826 DOI: 10.1126/science.add9480
    Climate change and fishing present dual threats.
  13. Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al.
    Science, 2022 Aug 26;377(6609):960-966.
    PMID: 35881005 DOI: 10.1126/science.abp8337
    Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
  14. Sumaila UR, Skerritt DJ, Schuhbauer A, Villasante S, Cisneros-Montemayor AM, Sinan H, et al.
    Science, 2021 10 29;374(6567):544.
    PMID: 34709891 DOI: 10.1126/science.abm1680
    [Figure: see text].
  15. Sonne C, Peng WX, Alstrup AKO, Lam SS
    Science, 2021 Jun 18;372(6548):1271.
    PMID: 34140374 DOI: 10.1126/science.abj3359
  16. Law YH
    Science, 2021 Mar 26;371(6536):1302-1305.
    PMID: 33766870 DOI: 10.1126/science.371.6536.1302
  17. Xia C, Lam SS, Sonne C
    Science, 2021 03 19;371(6535):1214.
    PMID: 33737479 DOI: 10.1126/science.abh3100
  18. Colella JP, Agwanda BR, Anwarali Khan FA, Bates J, Carrión Bonilla CA, de la Sancha NU, et al.
    Science, 2020 11 13;370(6518):773-774.
    PMID: 33184198 DOI: 10.1126/science.abe4813
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links