Displaying publications 1 - 20 of 148 in total

Abstract:
Sort:
  1. A Valerio A, Austin AD, Masner L, Johnson NF
    Zookeys, 2013.
    PMID: 23878506 DOI: 10.3897/zookeys.314.3475
    The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.
  2. Abdul-Latiff MA, Ruslin F, Fui VV, Abu MH, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Zookeys, 2014.
    PMID: 24899832 DOI: 10.3897/zookeys.407.6982
    Phylogenetic relationships among Malaysia's long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo's population was distinguished from Peninsula's population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia's M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.
  3. Ahda Y, Nugraha FAD, Hon Tjong D, Kurniawan N, Amardi Y, Fauzi MA, et al.
    Zookeys, 2023;1168:367-386.
    PMID: 37448483 DOI: 10.3897/zookeys.1168.98724
    Among the six species of Cyrtodactylus occurring in Sumatra, two species were described based on non-Sumatran type series, C.consobrinus and C.quadrivirgatus. The latter species was described originally from Thailand thus the wider distribution in Sumatra should be clarified taxonomically. Cyrtodactylusquadrivirgatus from Sumatra Barat was examined using both morphology and the Natrium Dehydrogenase Subunit 2 (ND2) gene to clarify its taxonomic status and phylogenetic placement. It was found that these specimens form a sister clade to all other species of the sworderi group from Peninsular Malaysia and the genetic distance ranges from 20-24.3%. This subset is herein described as a new species. The new species is readily distinguished from C.quadrivirgatus and other Sumatran species by a combination of characters: small size SVL 37.5-53.78 mm; longitudinal rows of dorsal tubercles 16-19; paravertebral tubercles 31-41; ventral scales 32-43; 24-49 enlarged precloacal and femoral scales; precloacal pores rarely present; no precloacal depression; two postcloacal tubercles on each side; 14-19 subdigital lamellae on forth toe; 9-15 supralabial scales; 9-12 infralabial scales; three or four internasal scales; and 3-6 gular scales that border the first pair of postmental scales. This work underscores the importance of clarifying widely distributed species for taxonomic validation.
  4. Aketarawong N, Isasawin S, Sojikul P, Thanaphum S
    Zookeys, 2015.
    PMID: 26798262 DOI: 10.3897/zookeys.540.10058
    The Carambola fruit fly, Bactrocera carambolae, is an invasive pest in Southeast Asia. It has been introduced into areas in South America such as Suriname and Brazil. Bactrocera carambolae belongs to the Bactrocera dorsalis species complex, and seems to be separated from Bactrocera dorsalis based on morphological and multilocus phylogenetic studies. Even though the Carambola fruit fly is an important quarantine species and has an impact on international trade, knowledge of the molecular ecology of Bactrocera carambolae, concerning species status and pest management aspects, is lacking. Seven populations sampled from the known geographical areas of Bactrocera carambolae including Southeast Asia (i.e., Indonesia, Malaysia, Thailand) and South America (i.e., Suriname), were genotyped using eight microsatellite DNA markers. Genetic variation, genetic structure, and genetic network among populations illustrated that the Suriname samples were genetically differentiated from Southeast Asian populations. The genetic network revealed that samples from West Sumatra (Pekanbaru, PK) and Java (Jakarta, JK) were presumably the source populations of Bactrocera carambolae in Suriname, which was congruent with human migration records between the two continents. Additionally, three populations of Bactrocera dorsalis were included to better understand the species boundary. The genetic structure between the two species was significantly separated and approximately 11% of total individuals were detected as admixed (0.100 ≤ Q ≤ 0.900). The genetic network showed connections between Bactrocera carambolae and Bactrocera dorsalis groups throughout Depok (DP), JK, and Nakhon Sri Thammarat (NT) populations. These data supported the hypothesis that the reproductive isolation between the two species may be leaky. Although the morphology and monophyly of nuclear and mitochondrial DNA sequences in previous studies showed discrete entities, the hypothesis of semipermeable boundaries may not be rejected. Alleles at microsatellite loci could be introgressed rather than other nuclear and mitochondrial DNA. Bactrocera carambolae may be an incipient rather than a distinct species of Bactrocera dorsalis. Regarding the pest management aspect, the genetic sexing Salaya5 strain (SY5) was included for comparison with wild populations. The SY5 strain was genetically assigned to the Bactrocera carambolae cluster. Likewise, the genetic network showed that the strain shared greatest genetic similarity to JK, suggesting that SY5 did not divert away from its original genetic makeup. Under laboratory conditions, at least 12 generations apart, selection did not strongly affect genetic compatibility between the strain and wild populations. This knowledge further confirms the potential utilization of the Salaya5 strain in regional programs of area-wide integrated pest management using SIT.
  5. Al-Razi H, Maria M, Muzaffar SB
    Zookeys, 2020;927:127-151.
    PMID: 32341678 DOI: 10.3897/zookeys.927.48733
    Raorchestes is a speciose genus of bush frogs with high diversity occurring in the Western Ghats of India. Relatively fewer species have been recorded across India, through Bangladesh, southern China, into Vietnam and Peninsular Malaysia. Many bush frogs are morphologically cryptic and therefore remain undescribed. Here, a new species, Raorchestes rezakhani sp. nov., is described from northeastern Bangladesh based on morphological characters, genetics, and bioacoustics. The 16S rRNA gene distinguished this species from 48 known species of this genus. Bayesian Inference and Maximum Likelihood analyses indicated that the new species was most similar to R. tuberohumerus, a species found in the Western Ghats, and to R. gryllus, a species found in Vietnam. Bioacoustics indicated that their calls were similar in pattern to most Raorchestes species, although number of pulses, duration of pulses, pulse intervals and amplitude differentiated it from a few other species. It is suggested that northeastern India, Bangladesh, northern Myanmar, and southern China represent important, relatively unexplored areas that could yield additional species of Raorchestes. Since many remaining habitat patches in Bangladesh are under severe threat from deforestation, efforts should be made to protect these last patches from further degradation.
  6. Annate S, Ng TH, Sutcharit C, Panha S
    Zookeys, 2023;1180:295-316.
    PMID: 38312321 DOI: 10.3897/zookeys.1180.106498
    The status of the indigenous Southeast Asian apple snails belonging to the genus Pila is of concern due to their fast rate of population decline, possibly as a result of multiple factors including habitat loss or disturbance and the introduction of globally-invasive apple snails, Pomacea spp. Conservation actions, including captive breeding of the native Pila species, have been suggested as urgent remedial practices, but the lack of knowledge regarding the fundamental reproductive biology of indigenous Pila spp. makes such practices difficult. In the present study, observations on the mating and egg-laying behaviour of an economic valuable apple snail native to Southeast Asia, P.virescens, were conducted using video recording to examine and describe their reproductive behaviour under a laboratory condition. A total of 15 types of mating and seven egg-laying behaviour were recorded. The mating sequence which subsequently resulted in egg laying was comprised of seven types of major sequential behaviour: mate probing, mounting, shell circling, positioning, insemination posture, sheath withdrawal and dismounting. Rejection of mating attempts by the female was frequently observed. Egg laying occurred during either day or night. A sequence of seven distinct types of behaviour were performed during oviposition: climbing, positioning, forming a temporary tube, mucous secreting, egg depositing, leaving and resting. Overall, these results provide an understanding of the egg-laying behavioural process and highlight its complexity in P.virescens. In addition, detailed ethograms of mating and egg-laying behaviour were derived. These will promote further systematic comparative studies of the reproductive behaviour of apple snails.
  7. Arimoto K
    Zookeys, 2016.
    PMID: 27408551 DOI: 10.3897/zookeys.593.7995
    Dilobitarsus pendleburyi Fleutiaux, 1934 is recorded for the first time after its original description and is redescribed. This represents the first record from the Malay Peninsula, Malaysia and Sumatra, Indonesia. The systematic position of this species is discussed.
  8. Astafurova YV, Proshchalykin MY, Schwarz M
    Zookeys, 2020;937:31-88.
    PMID: 32547298 DOI: 10.3897/zookeys.937.51708
    The available information about the cleptoparasitic bees of the genus Sphecodes in Southeast Asia is summarized. Thirty-one species are currently known from this area. Four new species are described: Sphecodes discoverlifei Astafurova & Proshchalykin, sp. nov. (Laos), S. engeli Astafurova & Proshchalykin, sp. nov. (Laos, Vietnam), S. ilyadadaria Astafurova, sp. nov. (Indonesia), and S. pseudoredivivus Astafurova & Proshchalykin, sp. nov. (Laos). Nine species are newly recorded from South East Asia: S. chaprensis Blüthgen, 1927 (Laos), S. howardi Cockerell, 1922 (Malaysia, Myanmar, Thailand), S. kershawi Perkins, 1921 (Indonesia, Malaysia, Myanmar, Thailand), S. laticeps Meyer, 1920 (Thailand, Vietnam), S. montanus Smith, 1879 (Laos), S. sauteri Meyer, 1925 (Laos), S. sikkimensis Blüthgen, 1927 (Laos, Myanmar), S. simlaensis Blüthgen, 1924 (Laos), and S. turneri Cockerell, 1916 (Laos). Based on type specimens, new synonymies have been proposed for Sphecodes kershawi Perkins, 1921 = S. javanensis Blüthgen, 1927, syn. nov.; S. simlaensis Blüthgen, 1924 = S. simlaellus Blüthgen, 1927, syn. nov.; S. laticeps Meyer, 1920 = S. biroi mariae Cockerell, 1930, syn. nov. Lectotypes are designated for Sphecodes biroi Friese, 1909, S. simlaellus Blüthgen, 1927, and S. laticeps Meyer, 1920. The female of Sphecodes sauteri Meyer, 1925, and the male of S. turneri Cockerell, 1916 are described for the first time.
  9. Azman BA, Othman BH
    Zookeys, 2013.
    PMID: 24146563 DOI: 10.3897/zookeys.335.5567
    Eleven taxa including one new species of gammaridean amphipods are reported from the waters of Pulau Tioman. The presence of Tethygeneia sunda sp. n. represents the first record of the genus from the South China Sea. Additional material of Ampelisca brevicornis (Costa, 1853); Cymadusa vadosa Imbach, 1967; Paradexamine setigera Hirayama, 1984; Ericthonius pugnax (Dana, 1853); Leucothoe furina (Savigny, 1816); Microlysias xenokeras (Stebbing, 1918); Monoculodes muwoni Jo, 1990 are identified from the South China Sea, supporting previous records by Lowry (2000), Huang (1994), Imbach (1967), Margulis (1968) and Nagata (1959). Three additional species, Gitanopsis pusilla K.H. Barnard, 1916, Liljeborgia japonica Nagata, 1965b and Latigammaropsis atlantica (Stebbing, 1888), whilst previously reported from the neighbouring waters, comprise new records for the South China Sea.
  10. Azman BA, Melvin CW
    Zookeys, 2011.
    PMID: 21594101 DOI: 10.3897/zookeys.87.817
    Two new species of urothoid amphipods from Pulau Sibu and Pulau Tinggi, Johor are described and illustrated. The specimens of Urothoe sibuensis new species were collected by vertical haul plankton net and is distinctively different from other existing Urothoe species by these combination of special characters; similar gnathopods 1-2 with short and stout propodus expanded into poorly defined palms; large eyes and epimeron 3 smooth. Urothoe tinggiensis new species as collected using an airlift suction sampler at seagrass area is characterized by its different gnathopodal configuration with setose dactylus of 5th pereopod; eyes minute; carpus is wider than merus in the 5th pereopod; subquadrate coxa 4; merus and carpus of pereopods 6-7 are linear.
  11. Azmi SS, Ibrahim YS, Angsupanich S, Sumpuntarat P, Sato M
    Zookeys, 2021;1011:1-24.
    PMID: 33551646 DOI: 10.3897/zookeys.1011.59780
    The reproductive and developmental characteristics of the nereidid polychaete, Neanthes glandicincta Southern, 1921, commonly recorded in tropical estuaries in the Indo-West Pacific, were examined from Malaysia (the mangrove area of Kuala Ibai, Terengganu) and Thailand (the Lower Songkhla Lagoon) on the east coast of the Malay Peninsula. Epitokous metamorphosis of fully mature males and females and their reproductive swimming behaviour were recorded based on ten Malaysian epitokous specimens, which were collected at night during spring tides in a period of January 2018 to March 2019. Six Thailand epitokes were obtained in February and March 2006 by the laboratory rearing of immature worms. Epitokous metamorphosis is characterised by the enlargement of eyes in both sexes, division of the body into three parts and modification of parapodia with additional lobes in the mid-body of males, and replacement of atokous chaetae in the mid-body by epitokous natatory chaetae, completely in males and incompletely in females. The diameter of coelomic unfertilised eggs in females was 100-140 µm. After fertilisation, each egg formed a jelly layer, inside which embryonic development progressed. Trochophores hatched out of the jelly layer, entering a short free-swimming larval phase followed by demersal life at the early stage of 3-chaetiger nectochaeta one day after fertilisation. Then, the larvae entered benthic life as juveniles, crawling on the bottom, at the late stage of 3-chaetiger nectochaeta two days after fertilisation. The results indicate that N. glandicincta has an annual life cycle, which is usually completed within an estuary with limited larval dispersal ability.
  12. Badli-Sham BH, Syafiq MF, Aziz MSA, Mohd Jalil NR, Awang MT, Othman MNA, et al.
    Zookeys, 2023;1157:43-93.
    PMID: 37398628 DOI: 10.3897/zookeys.1157.95873
    Amphibians of Sekayu lowland forest have been studied more than a decade, with discoveries of new records of species showing no sign of abating between the years 2003 to 2020, indicating the remarkably rich diversity of anurans in this forest. Despite ceaseless anthropogenic activities in this area, this study successfully recorded 52 species of amphibians from 32 genera in the lowland forest of Sekayu. The species composition consisted of a single species from the family Ichthyophiidae and 51 species of anurans of 31 genera and six families. The number of species recorded has steadily increased especially during more recent surveys from 2015 to 2020. This study augments the total number of amphibian species recorded from Hulu Terengganu by ten additional species, increasing the total to 70 species for the district.
  13. Balke M, Bergsten J, Wang LJ, Hendrich L
    Zookeys, 2017.
    PMID: 28325968 DOI: 10.3897/zookeys.647.11231
    Rompindessus jenisi Balke, Bergsten & Hendrich, gen. n. et sp. n. is described from near Rompin village in West Malaysia. The new genus is characterized by the presence of an occipital line and basal pronotal striae, the presence of a thick anterior bead on clypeus and two-segmented parameres as well as by the absence of basal elytral striae, the absence of sutural line on elytron, the absence of basal epipleural transverse carina, and the absence of longitudinal elytral carina. Moreover, male pro- and mesotarsus appear stout, and distinctly dilated laterally; the pronotum is comparably long and parallel-sided and the colour of beetle conspicuous dark orange. Leiodytes kualalipis Balke, Wang, Bergsten & Hendrich, sp. n. is described from West Malaysia (Pahang) and South Vietnam (Cat Tien). It is well characterized by its large size, elongate body and the form of the median lobe. Limbodessus fijiensis (J. Balfour-Browne, 1944), comb. n. described from Fiji is a new synonym of Limbodessus curviplicatus (Zimmermann, 1927) described from Samoa.
  14. Bayer S
    Zookeys, 2011.
    PMID: 22287909 DOI: 10.3897/zookeys.153.2110
    The present paper provides a taxonomic revision of the genus Fecenia with emphasis on the characteristics of the pre-epigynes which are integrated for the first time into an identification key. As a result, one species is revalidated, Fecenia protensa Thorell, 1891, stat. n., and two new junior synonyms for Fecenia protensa are recognised: Fecenia sumatrana Kulczyński, 1908, syn. n. and Fecenia nicobarensis (Tikader, 1977), syn. n. New records are reported: Fecenia ochracea (Doleschall, 1859)from Malaysian Borneo, Fecenia macilenta (Simon, 1885) from Sumatra, Indonesia, Fecenia protensa from Thailand and Malaysia, Fecenia travancoria Pocock, 1899 from Sri Lanka and Thailand, and Fecenia cylindrata Thorell, 1895 from Thailand and Laos. Additional information on the biology of Fecenia is provided and the validity of characters for identifying Fecenia species is discussed.
  15. Bílý S, Nakládal O
    Zookeys, 2011.
    PMID: 21998499 DOI: 10.3897/zookeys.116.1403
    Descriptions of four new species of the genus Philanthaxia Deyrolle, 1864: Philanthaxia pseudoaeneasp. n. (Thailand), Philanthaxia jaklisp. n. (Indonesia, Sumatra), Philanthaxia chalcogenioidessp. n. (Indonesia, Sabah) and Philanthaxia lombokanasp. n. (Indonesia, Lombok) are given. The new species and male genitalia are illustrated and compared with the most similar congeners. Sexual dimorphism of Philanthaxia iris Obenberger, 1938 is described and discussed.
  16. Cerretti P, Badano D, Gisondi S, Giudice GL, Pape T
    Zookeys, 2020;903:1-130.
    PMID: 31997887 DOI: 10.3897/zookeys.903.37775
    The world Rhinophoridae are catalogued, recognising 33 genera and 177 species. Nomenclatural information is provided for all genus-group and species-group names, including lists of synonyms and name-bearing type data. Species distributions are recorded by country. A key to the world genera is presented. Four new genera are erected to accommodate five new species, which do not fit within any of the current generic concepts in Rhinophoridae, according to the results of a morphology-based phylogenetic analysis: Marshallicona Cerretti & Pape with type species Marshallicona quitu Cerretti & Pape, gen. et sp. nov. (Ecuador); Maurhinophora Cerretti & Pape with type species Maurhinophora indoceanica Cerretti & Pape, gen. et sp. nov. (Mauritius); Neotarsina Cerretti & Pape with type species Neotarsina caraibica Cerretti & Pape, gen. et sp. nov. (Trinidad and Tobago) and Neotarsina andina Cerretti & Pape, sp. nov. (Peru); Kinabalumyia Cerretti & Pape with type species Kinabalumyia pinax Cerretti & Pape, gen. et sp. nov. (Malaysia, Sabah). The genus Aporeomyia Pape & Shima (type species Aporeomyia antennalis Pape & Shima), originally assigned to Tachinidae, is here reassigned to Rhinophoridae based on a reassessment of the homologies of the male terminalia. The following five species-group names, which were previously treated as junior synonyms or nomina dubia, are recognised as valid species names: Acompomintho caucasica (Villeneuve, 1908), stat. rev. [from nomen dubium to valid species]; Acompomintho sinensis (Villeneuve, 1936), stat. rev. [from nomen dubium to valid species]; Stevenia bertei (Rondani, 1865), stat. rev. [from nomen dubium to valid species]; Stevenia sardoa Villeneuve, 1920, stat. rev. [from junior synonym of Rhinophora deceptoria Loew, 1847 to valid species]; Stevenia subalbida (Villeneuve, 1911), stat. rev. [from junior synonym of Rhinophora deceptoria Loew, 1847 to valid species]. Reversal of precedence is invoked for the following case of subjective synonymy to promote stability in nomenclature: Rhinophora lepida (Meigen, 1824), nomen protectum, and Musca parcus Harris, 1780: 144, nomen oblitum. New generic and specific synonymies are proposed for the following two names: Mimodexia Rohdendorf, 1935, junior synonym of Tromodesia Rondani, 1856, syn. nov. and Ptilocheta tacchetti Rondani, 1865, junior synonym of Stevenia obscuripennis (Loew, 1847), syn. nov. The following new combinations are proposed: Acompomintho sinensis (Villeneuve, 1936), comb. nov. [transferred from Tricogena Robineau-Desvoidy, 1830]; Tromodesia guzari (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia intermedia (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia lindneriana (Rohdendorf, 1961), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia magnifica (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia obscurior (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia pallidissima (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935]; Tromodesia setiventris (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935] and Tromodesia shachrudi (Rohdendorf, 1935), comb. nov. [transferred from Mimodexia Rohdendorf, 1935].
  17. Chan BKK, Tsao YF, Ganmanee M
    Zookeys, 2020;914:1-31.
    PMID: 32132853 DOI: 10.3897/zookeys.914.49328
    Octomeris is a chthamalid intertidal barnacle with eight shell plates. There are currently two species of such barnacles: O. brunnea Darwin, 1854 (type locality in the Philippines), common in the Indo-Pacific region, and O. angulosa Sowerby, 1825, only recorded in South Africa. Octomeris intermedia Nilsson-Cantell, 1921, identified from the Mergui Archipelago in Myanmar, was considered to be conspecific with O. brunnea by Hiro (1939) based on samples collected in Taiwan. The morphological differences in shell and opercular plates between O. brunnea and O. intermedia are believed to be intra-specific variations due to different degrees of shell erosion. In the present study, the genetic and morphological differentiations of Octomeris in the Indo-Pacific region were examined. This study found two molecular clades (with inter-specific differences) based on the divergence in the COI genes, and the species also have distinct geographical distributions. The Octomeris brunnea clade covers samples collected from the Philippines and Taiwan waters and the other clade, which we argue is O. intermedia, is distributed in Phuket and Krabi, Thailand and Langkawi, Malaysia. Phuket and Krabi are located approximately 300 km south of the Mergui Archipelago, the type locality of O. intermedia. The morphology of samples collected from Thailand fits the type description of O. intermedia in Nilsson-Cantell (1921). Our study concludes that O. intermedia is a valid species based on morphological and molecular evidence.
  18. Chan KO, Anuar S, Sankar A, Law IT, Law IS, Shivaram R, et al.
    Zookeys, 2023;1186:221-234.
    PMID: 38312859 DOI: 10.3897/zookeys.1186.110422
    In a genomic study by Chan and colleagues, pit-vipers of the Trimeresuruserythrurus-purpureomaculatus complex from the Ayeyarwady and Yangon regions in Myanmar were demonstrated to be a distinct species based on robust population genetic and species delimitation analyses. Here, we provide morphological characterizations and a formal description of those populations as a new species. The new species, Trimeresurusayeyarwadyensissp. nov., is most closely related to T.erythrurus and T.purpureomaculatus and shares morphological characteristics with both of those species. Some specimens of T.ayeyarwadyensissp. nov. have green dorsal coloration and no distinct dorsal blotches (a trait shared with T.erythrurus but not T.purpureomaculatus), while others have dark dorsal blotches (a trait shared with T.purpureomaculatus but not T.erythrurus). The distinct evolutionary trajectory of the new species, coupled with the lack of obvious morphological differentiation, represents a classic example of the cryptic nature of species commonly found in the Trimeresurus group of Asian pit-vipers and underscores the need for data-rich analyses to verify species' boundaries more broadly within this genus.
  19. Chandramouli SR, Vasudevan K, Harikrishnan S, Dutta SK, Janani SJ, Sharma R, et al.
    Zookeys, 2016.
    PMID: 26877687 DOI: 10.3897/zookeys.555.6522
    A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.
  20. Chang WJ, Yao Z, Li S
    Zookeys, 2020;961:41-118.
    PMID: 32904093 DOI: 10.3897/zookeys.961.53058
    Previously, the genus Merizocera Fage, 1912 comprised only seven species from Indonesia, Malaysia, Sri Lanka, and Thailand. In this study, 28 new species are described from South and Southeast Asia: M. baoshan Li, sp. nov. (♂♀), M. betong Li, sp. nov. (♂♀), M. colombo Li, sp. nov. (♂♀), M. galle Li, sp. nov. (♂♀), M. hponkanrazi Li, sp. nov. (♂), M. kachin Li, sp. nov. (♂♀), M. kandy Li, sp. nov. (♂♀), M. mandai Li, sp. nov. (♂♀), M. krabi Li, sp. nov. (♂♀), M. kurunegala Li, sp. nov. (♂♀), M. lincang Li, sp. nov. (♀), M. mainling Li, sp. nov. (♂♀), M. nyingchi Li, sp. nov. (♀), M. peraderiya Li, sp. nov. (♂♀), M. phuket Li, sp. nov. (♂♀), M. putao Li, sp. nov. (♂♀), M. ranong Li, sp. nov. (♂♀), M. ratnapura Li, sp. nov. (♂♀), M. salawa Li, sp. nov. (♂), M. tak Li, sp. nov. (♀), M. tanintharyi Li, sp. nov. (♂♀), M. tengchong Li, sp. nov. (♂), M. thenna Li, sp. nov. (♂♀), M. uva Li, sp. nov. (♀), M. wenshan Li, sp. nov. (♂♀), M. wui Li, sp. nov. (♂♀), M. yala Li, sp. nov. (♀), and M. yuxi Li, sp. nov. (♂♀). Among them the genus Merizocera is reported for the first time from China, Myanmar, and Singapore.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links