Septins belong to GTPases that are involved in vital cellular activities, including cytokinesis. Although present in many organisms, they are yet to be isolated from Aedes albopictus. This study reports for the first time on a serendipitous isolation of a partial septin sequence from Ae. albopictus and its developmental expression profile. The Ae. albopictus partial septin sequence contains 591 nucleotides encoding 197 amino acids. It shares homology with several insect septin genes and has a close phylogenetic relationship with Aedes aegypti and Culex quinquefasciatus septins. The Ae. albopictus septin fragment was differentially expressed in the mosquito's developmental stages, with an increased expression in the adults.
A novel method for the control of Mansonia larvae was developed and tested. In this method, foliar absorption and translocation of a chemical insecticide, monocrotophos, a known systemic insecticide was studied in the Eicchornia plant. Acetone solution of the insecticide was painted onto leaves of the plant. At daily intervals, stems were severed and divided into equal sections which were introduced into bowls. Larvae of Aedes aegypti were tested for the presence of monocrotophos. It was found that translocation of the insecticide occurred at different rates in the stems and in some plants the chemical was also released into the surrounding water. Based on these results, 2 insecticides namely, monocrotophos and temephos were painted onto leaves of the host plant and their translocation to the root and water environment was examined by testing with Mansonia and Aedes aegypti larvae. The results again confirmed the translocation process and it was found that the insecticides were secreted into the surrounding water, thereby killing the larvae. However, in leaves painted with permethrin (synthetic pyrethroid) or flufenoxuron (chitin synthesis inhibitor), such a process was not detected. The potential of this new concept in Mansonia larval control is examined.
Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.