Displaying all 2 publications

Abstract:
Sort:
  1. Jasamai M, Simons C, Balzarini J
    PMID: 20589572 DOI: 10.1080/15257771003781634
    Acyclic nucleosides have been of considerable interest since the approval of aciclovir by the FDA to be used as an antiviral agent in the 1990s. The acyclic moieties and the bases used in the experiment were either available commercially or synthesized using literature methods. Vorbruggen coupling method was utilized involving reaction of persilylated heterocyclic bases with the appropriate acyclic moiety in the presence of a Lewis acid catalyst. A series of novel 6-azapyrimidine acyclic oxosugar nucleosides was successfully synthesized with a promising yield (more than 50%). An efficient method of protection and deprotection was also investigated.
    Matched MeSH terms: Aza Compounds/chemical synthesis*
  2. Saleem F, Kanwal, Khan KM, Chigurupati S, Solangi M, Nemala AR, et al.
    Bioorg Chem, 2021 01;106:104489.
    PMID: 33272713 DOI: 10.1016/j.bioorg.2020.104489
    Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.
    Matched MeSH terms: Aza Compounds/chemical synthesis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links