Displaying publications 1 - 20 of 112 in total

  1. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Chem, 2016 Feb;64:29-36.
    PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006
    Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
  2. Khan KM, Mesaik MA, Abdalla OM, Rahim F, Soomro S, Halim SA, et al.
    Bioorg Chem, 2016 Feb;64:21-8.
    PMID: 26637945 DOI: 10.1016/j.bioorg.2015.11.004
    Benzothiazole and its natural or synthetic derivatives have been used as precursors for several pharmacological agents for neuroprotective, anti-bacterial, and anti-allergic activities. The objective of the present study was to evaluate effects of benzothiazole analogs (compounds 1-26) for their immunomodulatory activities. Eight compounds (2, 4, 5, 8-10, 12, and 18) showed potent inhibitory activity on PHA-activated peripheral blood mononuclear cells (PBMCs) with IC50 ranging from 3.7 to 11.9 μM compared to that of the standard drug, prednisolone <1.5 μM. Some compounds (2, 4, 8, and 18) were also found to have potent inhibitory activities on the production of IL-2 on PHA/PMA-stimulated PBMCs with IC50 values ranging between <4.0 and 12.8 μM. The binding interaction of these compounds was performed through silico molecular docking. Compounds 2, 8, 9, and 10 significantly suppressed oxidative burst ROS production in phagocytes with IC50 values between <4.0 and 15.2 μM. The lipopolysaccharide (LPS)-induced nitrites in murine macrophages cell line J774 were found to be inhibited by compounds 4, 8, 9, and 18 at a concentration of 25 μg/mL by 56%, 91%, 58%, and 78%, respectively. Furthermore, compounds 5, 8, 12, and 18 showed significant (P<0.05) suppressive activity on Th-2 cytokine, interleukin 4 (IL-4) with an IC50 range of <4.0 to 40.3 μM. Interestingly compound 4 has shown a selective inhibitory activity on IL-2 and T cell proliferation (naïve T cell proliferation stage) rather than on IL-4 cytokine, while compound 12 displayed an interference with T-cell proliferation and IL-4 generation. Moreover compound 8 and 18 exert non-selective inhibition on both IL-2 and IL-4 cytokines, indicating a better interference with stage leading to humoral immune response and hence possible application in autoimmune diseases.
  3. Abd Razik BM, Osman H, Basiri A, Salhin A, Kia Y, Ezzat MO, et al.
    Bioorg Chem, 2014 Dec;57:162-168.
    PMID: 25462993 DOI: 10.1016/j.bioorg.2014.10.005
    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively.
  4. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Ur Rehman A, et al.
    Bioorg Chem, 2015 Feb;58:81-7.
    PMID: 25528720 DOI: 10.1016/j.bioorg.2014.12.001
    A new series of triazinoindole analogs 1-11 were synthesized, characterized by EI-MS and (1)H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46±0.008 and 312.79±0.06 μM when compared with the standard acarbose (IC50, 38.25±0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46±0.008, 37.78±0.05, 28.91±0.0, 38.12±0.04, 37.43±0.03, 36.89±0.06 and 37.11±0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.
  5. Jamila N, Khairuddean M, Yaacob NS, Kamal NN, Osman H, Khan SN, et al.
    Bioorg Chem, 2014 Jun;54:60-7.
    PMID: 24813683 DOI: 10.1016/j.bioorg.2014.04.003
    Garcinia hombroniana (seashore mangosteen) in Malaysia is used to treat itching and as a protective medicine after child birth. This study was aimed to investigate the bioactive chemical constituents of the bark of G. hombroniana. Ethyl acetate and dichloromethane extracts of G. hombroniana yielded two new (1, 9) and thirteen known compounds which were characterized by the spectral techniques of NMR, UV, IR and EI/ESI-MS, and identified as; 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone(1), 2,3',4,4'-tetrahydroxy-6-methoxybenzophenone (2), 2,3',4,6-tetrahydroxybenzophenone (3), 1,3,6,7-tetrahydroxyxanthone (4), 3,3',4',5,7-pentahydroxyflavone (5),3,3',5,5',7-pentahydroxyflavanone (6), 3,3',4',5,5',7-hexahydroxyflavone (7), 4',5,7-trihydroxyflavanone-7-rutinoside (8), 18(13→17)-abeo-3β-acetoxy-9α,13β-lanost-24E-en-26-oic acid (9), garcihombronane B (10), garcihombronane D (11), friedelan-3-one (12), lupeol (13), stigmasterol (14) and stigmasterol glucoside (15). In the in vitro cytotoxicity against MCF-7, DBTRG, U2OS and PC-3 cell lines, compounds 1 and 9 displayed good cytotoxic effects against DBTRG cancer cell lines. Compounds 1-8 were also found to possess significant antioxidant activities. Owing to these properties, this study can be further extended to explore more significant bioactive components of this plant.
  6. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
  7. Sim YL, Ariffin A, Khan MN
    Bioorg Chem, 2008 Aug;36(4):178-82.
    PMID: 18440044 DOI: 10.1016/j.bioorg.2008.03.003
    The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0x10(-3)-1.0 M at 1.0M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 10(6)-fold compared to the expected rate of analogous intermolecular reaction.
  8. Rahim F, Javed MT, Ullah H, Wadood A, Taha M, Ashraf M, et al.
    Bioorg Chem, 2015 Oct;62:106-16.
    PMID: 26318401 DOI: 10.1016/j.bioorg.2015.08.002
    A series of thirty (30) thiazole analogs were prepared, characterized by (1)H NMR, (13)C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59±0.01 and 389.25±1.75μM when compared with the standard eserine (IC50, 0.85±0.0001μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59±0.01, 1.77±0.01, 6.21±0.01, 7.56±0.01, 8.46±0.01, 14.81±0.32 and 16.54±0.21μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3±0.50, 35.3±0.64, 36.6±0.70, 44.81±0.81, 46.36±0.84, 48.2±0.06 and 48.72±0.91μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.
  9. Rahim F, Zaman K, Ullah H, Taha M, Wadood A, Javed MT, et al.
    Bioorg Chem, 2015 Dec;63:123-31.
    PMID: 26520885 DOI: 10.1016/j.bioorg.2015.10.005
    4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.
  10. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F, et al.
    Bioorg Chem, 2015 Dec;63:36-44.
    PMID: 26432614 DOI: 10.1016/j.bioorg.2015.09.004
    Biscoumarin analogs 1-18 have been synthesized, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5±0.39 and 104.62±0.3μM when compared with standard acarbose having IC50 value 774.5±1.94μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1-18 are new. Our synthesized compounds can further be studied to developed lead compounds.
  11. Taha M, Ismail NH, Javaid K, Imran S, Anouar el H, Wadood A, et al.
    Bioorg Chem, 2015 Dec;63:24-35.
    PMID: 26398141 DOI: 10.1016/j.bioorg.2015.09.001
    2-Indolcarbohydrazones 1-28 were synthesized and evaluated for their α-glucosidase inhibitory potential. A varying degree of inhibitory potential with IC50 values in the range of 2.3±0.11-226.4±6.8μM was observed while comparing these outcomes with the standard acarbose (IC50=906.0±6.3μM). The stereochemistry of ten (10) randomly selected compounds (1, 3, 6, 8, 12, 18, 19, 23, 25 and 28) was predicted by Density Functional Theory (DFT). The stability of E isomer was deduced by comparing the calculated and experimental vibration modes of νCO, νNC and νCH (CH in NCH-R). It was observed that except compound 18, all other compounds were deduced to have E configuration while molecular modeling studies revealed the key interactions between enzyme and synthesized compounds.
  12. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Khan KM, et al.
    Bioorg Chem, 2016 Jun;66:80-7.
    PMID: 27038849 DOI: 10.1016/j.bioorg.2016.03.010
    Benzothiazole analogs (1-20) have been synthesized, characterized by EI-MS and (1)H NMR, and evaluated for urease inhibition activity. All compounds showed excellent urease inhibitory potential varying from 1.4±0.10 to 34.43±2.10μM when compared with standard thiourea (IC50 19.46±1.20μM). Among the series seventeen (17) analogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, and 18 showed outstanding urease inhibitory potential. Analogs 15 and 19 also showed good urease inhibition activity. When we compare the activity of N-phenylthiourea 20 with all substituted phenyl derivatives (1-18) we found that compound 15 showed less activity than compound 20 having 3-methoxy substituent. The binding interactions of these active analogs were confirmed through molecular docking.
  13. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Saad SM, et al.
    Bioorg Chem, 2016 Jun;66:117-23.
    PMID: 27149363 DOI: 10.1016/j.bioorg.2016.04.006
    Twenty derivatives of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1,3,4-oxadiazoles (1-20) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (1-6, and 8-18) were found to be five to seventy folds more active with IC50 values in the range of 12.75±0.10-162.05±1.65μM, in comparison with the standard drug, acarbose (IC50=856.45±5.60μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.
  14. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al.
    Bioorg Chem, 2016 Jun;66:111-6.
    PMID: 27140727 DOI: 10.1016/j.bioorg.2016.04.005
    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.
  15. Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, et al.
    Bioorg Chem, 2016 08;67:9-17.
    PMID: 27231830 DOI: 10.1016/j.bioorg.2016.05.002
    The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25μM and IC50: 12.59±0.21μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62μM and IC50: 13.13±0.85μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.
  16. Taha M, Ismail NH, Imran S, Mohamad MH, Wadood A, Rahim F, et al.
    Bioorg Chem, 2016 Apr;65:100-9.
    PMID: 26894559 DOI: 10.1016/j.bioorg.2016.02.004
    Benzimidazole analogs 1-27 were synthesized, characterized by EI-MS and (1)HNMR and their α-glucosidase inhibitory activities were found out experimentally. Compound 25, 19, 10 and 20 have best inhibitory activities with IC50 values 5.30±0.10, 16.10±0.10, 25.36±0.14 and 29.75±0.19 respectively against α-glucosidase. Compound 6 and 12 has no inhibitory activity against α-glucosidase enzyme among the series. Further studies showed that the compounds are not showing any cytotoxicity effect. The docking studies of the compounds as well as the experimental activities of the compounds correlated well. From the molecular docking studies, it was observed that the top ranked conformation of all the compounds fit well in the active site of the homology model of α-glucosidase.
  17. Taha M, Ismail NH, Imran S, Rashwan H, Jamil W, Ali S, et al.
    Bioorg Chem, 2016 Apr;65:48-56.
    PMID: 26855413 DOI: 10.1016/j.bioorg.2016.01.007
    6-Chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives 1-26 were synthesized and characterized by various spectroscopic techniques. All these derivatives were evaluated for their antiglycation, antioxidant and β-glucuronidase potential followed their docking studies. In antiglycation assay, compound 2 (IC50=240.10±2.50μM) and 4 (IC50=240.30±2.90μM) was found to be most active compound of this series, while compounds 3 (IC50=260.10±2.50μM), 6 (IC50=290.60±3.60μM), 13 (IC50=288.20±3.00μM) and 26 (IC50=292.10±3.20μM) also showed better activities than the standard rutin (IC50=294.50±1.50μM). In antioxidant assay, compound 1 (IC50=69.45±0.25μM), 2 (IC50=58.10±2.50μM), 3 (IC50=74.25±1.10μM), and 4 (IC50=72.50±3.30μM) showed good activities. In β-glucuronidase activity, compounds 3 (IC50=29.25±0.50μM), compound 1 (IC50=30.10±0.60μM) and compound 4 (IC50=46.10±1.10μM) showed a significant activity as compared to than standard D-Saccharic acid 1,4-lactonec (IC50=48.50±1.25μM) and their interaction with the enzyme was confirm by docking studies.
  18. Imran S, Taha M, Ismail NH, Fayyaz S, Khan KM, Choudhary MI
    Bioorg Chem, 2015 Oct;62:83-93.
    PMID: 26275866 DOI: 10.1016/j.bioorg.2015.08.001
    This article describes discovery of 29 novel bisindolylmethanes consisting of thiourea moiety, which had been synthesized through three steps. These novel bisindolylmethane derivatives evaluated for their potential inhibitory activity against carbonic anhydrase (CA) II. The results for in vitro assay of carbonic anhydrase II inhibition activity showed that some of the compounds are capable of suppressing the activity of carbonic anhydrase II. Bisindoles having halogen at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. Derivatives showing inhibition activity docked to further, understand the binding behavior of these compounds with carbonic anhydrase II. Docking studies for the active compound 3j showed that nitro substituent at para position fits into the core of the active site. The nitro substituent of compound 3j is capable of interacting with Zn ion. This interaction believed to be the main factor causing inhibition activity to take place.
  19. Mesaik MA, Khan KM, Rahim F, Taha M, Haider SM, Perveen S, et al.
    Bioorg Chem, 2015 Jun;60:118-22.
    PMID: 26000491 DOI: 10.1016/j.bioorg.2015.05.003
    The synthetic indole Mannich bases 1-13 have been investigated for their ability to modulate immune responses measured in vitro. These activities were based on monitoring their affects on T-lymphocyte proliferation, reactive oxygen species (ROS), IL (interleukin)-2, IL-4, and nitric oxide production. Compound 5 was found to be the most potent immunomodulator in this context. Four of the synthesized compounds, 5, 11, 12, and 13, have significant potent inhibitory effects on T-cell proliferation, IL-4, and nitric oxide production. However, none of the thirteen indole compounds exerted any activity against ROS production.
  20. Rahim F, Ullah H, Javid MT, Wadood A, Taha M, Ashraf M, et al.
    Bioorg Chem, 2015 Oct;62:15-21.
    PMID: 26162519 DOI: 10.1016/j.bioorg.2015.06.006
    A series of thiazole derivatives 1-21 were prepared, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23±0.03 and 424.41±0.94μM when compared with the standard acarbose (IC50, 38.25±0.12μM). Compound (8) (IC50, 18.23±0.03μM) and compound (7) (IC50=36.75±0.05μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25±0.12μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links