A nationwide screening program searching for microbial control agents of mosquitos was initiated in Malaysia in 1986. A total of 725 samples were collected and 2,394 bacterial colonies were isolated and screened for larvicidal activity. From such screening, 20 Bacillus thuringiensis, 6 B. sphaericus, 1 Clostridium bifermentans and 2 Pseudomonas pseudomallei larvicidal isolates were obtained. Of these, a new B. thuringiensis named as subspecies malaysianensis was found, while the C. bifermentans was also a new anaerobe individualized as serovar malaysia. It was concluded that this screening program was highly successful.
Vegetative proteins from Malaysian strains of Bacillus thuringiensis israelensis strains (Bt 11, Bt 12, Bt 15, Bt 16, Bt 17, Bt 21 and Bt 22) and Bacillus sphaericus H-25 strains (Bs 1 and Bs 2) were screened for haemolytic, cytotoxic and larvicidal activity. SDS-PAGE profiles of the Bacillus thuringiensis strains studied consistently showed major bands of 33-37 kDa and 47 kDa. Bt 16 also showed two bands of 66 kDa and 45 kDa similar to the previously reported binary vegetative protein, Vip1Ac (66 kDa) and Vip 2Ac (45 kDa). Both the Bacillus sphaericus strains showed a 35 kDa band that was similiar to a previously reported vegetative protein, the Mtx2 protein. Bs 2 also contains a 37 kDa band, similar to another vegetative protein, the Mtx 3 protein. With the exception of Bt 17 and Bt 21, vegetative proteins from all Bacillus thuringiensis and Bacillus sphaericus strains were highly haemolytic to human erythrocytes, causing more than 75% haemolysis at the highest concentration of 200 microg/ml. High haemolytic activity was associated with high cytotoxic activity with most of the haemolytic strains being indiscriminately cytotoxic to both CEM-SS (human T lymphoblastoid) and HeLa (human uterus cervical cancer) cell lines. Interestingly, the less haemolytic vegetative proteins from Bt 17 and Bt 21 demonstrated cytotoxic activity comparable to that of the highly haemolytic vegetative proteins. Bt 21 displayed toxicity towards both cell lines while Bt 17 was more toxic towards CEM-SS cells. Bioassay against Aedes aegypti and Culex quinquefasciatus larvae revealed that vegetative proteins from the Bacillus thuringiensis strains had activity against both species of larvae but vegetative proteins from Bacillus sphaericus were weakly larvicidal towards Cx. quinquefasciatus only.