Displaying publications 1 - 20 of 485 in total

Abstract:
Sort:
  1. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*; Bacterial Proteins/chemistry*
  2. Khusaini MS, Rahman RN, Mohamad Ali MS, Leow TC, Basri M, Salleh AB
    PMID: 21393852 DOI: 10.1107/S1744309111002028
    An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein-solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09×0.19×0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=117.41, b=80.85, c=99.44 Å, β=96.40°.
    Matched MeSH terms: Bacterial Proteins/chemistry*
  3. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry*
  4. Boyko K, Gorbacheva M, Rakitina T, Korzhenevskiy D, Vanyushkina A, Kamashev D, et al.
    Acta Crystallogr F Struct Biol Commun, 2015 Jan 01;71(Pt 1):24-7.
    PMID: 25615963 DOI: 10.1107/S2053230X14025333
    HU proteins belong to the nucleoid-associated proteins (NAPs) that are involved in vital processes such as DNA compaction and reparation, gene transcription etc. No data are available on the structures of HU proteins from mycoplasmas. To this end, the HU protein from the parasitic mycoplasma Spiroplasma melliferum KC3 was cloned, overexpressed in Escherichia coli and purified to homogeneity. Prismatic crystals of the protein were obtained by the vapour-diffusion technique at 4°C. The crystals diffracted to 1.36 Å resolution (the best resolution ever obtained for a HU protein). The diffraction data were indexed in space group C2 and the structure of the protein was solved by the molecular-replacement method with one monomer per asymmetric unit.
    Matched MeSH terms: Bacterial Proteins/biosynthesis; Bacterial Proteins/isolation & purification; Bacterial Proteins/chemistry*
  5. Shaibullah S, Mohd-Sharif N, Ho KL, Firdaus-Raih M, Nathan S, Mohamed R, et al.
    Acta Crystallogr F Struct Biol Commun, 2014 Dec 01;70(Pt 12):1697-700.
    PMID: 25484229 DOI: 10.1107/S2053230X14025278
    Melioidosis is an infectious disease caused by the pathogenic bacterium Burkholderia pseudomallei. Whole-genome sequencing revealed that the B. pseudomallei genome includes 5855 coding DNA sequences (CDSs), of which ∼25% encode hypothetical proteins. A pathogen-associated hypothetical protein, BPSL1038, was overexpressed in Escherichia coli, purified and crystallized using vapour-diffusion methods. A BPSL1038 protein crystal that grew using sodium formate as precipitant diffracted to 1.55 Å resolution. It belonged to space group C2221, with unit-cell parameters a = 85.36, b = 115.63, c = 46.73 Å. The calculated Matthews coefficient (VM) suggests that there are two molecules per asymmetric unit, with a solvent content of 48.8%.
    Matched MeSH terms: Bacterial Proteins/chemistry*
  6. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Bacterial Proteins/immunology*
  7. Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A
    Anal Biochem, 2016 09 15;509:135-141.
    PMID: 27402177 DOI: 10.1016/j.ab.2016.06.030
    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.
    Matched MeSH terms: Bacterial Proteins/chemistry*
  8. Babaei M, Sulong A, Hamat R, Nordin S, Neela V
    PMID: 25858356 DOI: 10.1186/s12941-015-0071-7
    Antiseptics are commonly used for the management of MDR (multiple drug resistance) pathogens in hospitals. They play crucial roles in the infection control practices. Antiseptics are often used for skin antisepsis, gauze dressing, preparation of anatomical sites for surgical procedure, hand sterilization before in contact with an infected person, before an invasive procedure and as surgical scrub.
    Matched MeSH terms: Bacterial Proteins/genetics*
  9. Ko WC, Stone GG
    Ann Clin Microbiol Antimicrob, 2020 Apr 01;19(1):14.
    PMID: 32238155 DOI: 10.1186/s12941-020-00355-1
    BACKGROUND: Antimicrobial resistance among nosocomial Gram-negative pathogens is a cause for concern in the Asia-Pacific region. The aims of this study were to measure the rates of resistance among clinical isolates collected in Asia-Pacific countries, and to determine the in vitro antimicrobial activities of ceftazidime-avibactam and comparators against these isolates.

    METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).

    RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.

    CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.

    Matched MeSH terms: Bacterial Proteins/genetics
  10. Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, et al.
    Antimicrob Agents Chemother, 2009 Sep;53(9):3832-6.
    PMID: 19596880 DOI: 10.1128/AAC.00121-09
    Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC > or = 0.125 microg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC < or = 32 microg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6')-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5alpha transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/physiology
  11. Harris PN, Yin M, Jureen R, Chew J, Ali J, Paynter S, et al.
    PMID: 25932324 DOI: 10.1186/s13756-015-0055-6
    Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae are often susceptible in vitro to β-lactam/β-lactamase inhibitor (BLBLI) combination antibiotics, but their use has been limited by concerns of clinical inefficacy. We aimed to compare outcomes between patients treated with BLBLIs and carbapenems for bloodstream infection (BSI) caused by cefotaxime non-susceptible (likely ESBL- or AmpC β-lactamase-producing) Escherichia coli and Klebsiella pneumoniae.
    Matched MeSH terms: Bacterial Proteins
  12. Ngoi ST, Chong CW, Ponnampalavanar SSS, Tang SN, Idris N, Abdul Jabar K, et al.
    Antimicrob Resist Infect Control, 2021 04 23;10(1):70.
    PMID: 33892804 DOI: 10.1186/s13756-021-00936-5
    BACKGROUND: Knowledge on the epidemiology, genotypic and phenotypic features of antimicrobial-resistant (AMR) ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli) and their association with hospital-acquired infections (HAIs) are limited in Malaysia. Therefore, we evaluated the AMR features and resistance mechanisms of the ESKAPEE pathogens collected in a tertiary hospital located in the capital of Malaysia.

    METHODS: A total of 378 AMR-ESKAPEE strains were obtained based on convenience sampling over a nine-month study period (2019-2020). All strains were subjected to disk diffusion and broth microdilution assays to determine the antimicrobial susceptibility profiles. Polymerase chain reaction (PCR) and DNA sequence analyses were performed to determine the AMR genes profiles of the non-susceptible strains. Chi-square test and logistic regression analyses were used to correlate the AMR profiles and clinical data to determine the risk factors associated with HAIs.

    RESULTS: High rates of multidrug resistance (MDR) were observed in A. baumannii, K. pneumoniae, E. coli, and S. aureus (69-89%). All organisms except E. coli were frequently associated with HAIs (61-94%). Non-susceptibility to the last-resort drugs vancomycin (in Enterococcus spp. and S. aureus), carbapenems (in A. baumannii, P. aeruginosa, and Enterobacteriaceae), and colistin (in Enterobacteriaceae) were observed. Both A. baumannii and K. pneumoniae harbored a wide array of extended-spectrum β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaOXA). Metallo-β-lactamase genes (blaVEB, blaVIM, blaNDM) were detected in carbapenem-resistant strains, at a higher frequency compared to other local reports. We detected two novel mutations in the quinolone-resistant determining region of the gyrA in fluoroquinolone-resistant E. coli (Leu-102-Ala; Gly-105-Val). Microbial resistance to ampicillin, methicillin, and cephalosporins was identified as important risk factors associated with HAIs in the hospital.

    CONCLUSION: Overall, our findings may provide valuable insight into the microbial resistance pattern and the risk factors of ESKAPEE-associated HAIs in a tertiary hospital located in central Peninsular Malaysia. The data obtained in this study may contribute to informing better hospital infection control in this region.

    Matched MeSH terms: Bacterial Proteins/genetics*
  13. Khoo CH, Sim JH, Salleh NA, Cheah YK
    Antonie Van Leeuwenhoek, 2015 Jan;107(1):23-37.
    PMID: 25312847 DOI: 10.1007/s10482-014-0300-7
    Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*
  14. Chan KG, Wong CS, Yin WF, Sam CK, Koh CL
    Antonie Van Leeuwenhoek, 2010 Oct;98(3):299-305.
    PMID: 20376561 DOI: 10.1007/s10482-010-9438-0
    A bacterial strain, KM1S, was isolated from a Malaysian rainforest soil sample by using a defined enrichment medium that specifically facilitates selection of quorum quenching bacteria. KM1S was clustered closely to Bacillus cereus by 16S ribosomal DNA sequence analysis. It degraded N-3-oxo-hexanoyl homoserine lactone and N-3-oxo-octanoyl homoserine lactone in vitro rapidly at 4.98 and 6.56 microg AHL h(-1) per 10(9) CFU/ml, respectively, as determined by the Rapid Resolution Liquid Chromatography. The aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of N-acylhomoserine lactones, of KM1S was amplified and cloned. Sequence analysis indicated the presence of the motif (106)HXDH-59 amino acids-H(169)-21 amino acids-D(191) for N-acylhomoserine lactone lactonases.
    Matched MeSH terms: Bacterial Proteins/metabolism
  15. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
    Matched MeSH terms: Bacterial Proteins/genetics*
  16. Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, et al.
    Antonie Van Leeuwenhoek, 2018 Jul;111(7):1105-1115.
    PMID: 29299771 DOI: 10.1007/s10482-017-1013-5
    Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
    Matched MeSH terms: Bacterial Proteins/genetics
  17. Kawalek MD, Benjamin S, Lee HL, Gill SS
    Appl Environ Microbiol, 1995 Aug;61(8):2965-9.
    PMID: 7487029
    A new mosquitocidal Bacillus thuringiensis subsp., jegathesan, has recently been isolated from Malaysia. Parasporal crystal inclusions were purified from this strain and bioassayed against fourth-instar larvae of Culex quinquefasciatus, Aedes aegypti, Aedes togoi, Aedes albopictus, Anopheles maculatus, and Mansonia uniformis. The 50% lethal concentration of crystal inclusions for each species was 0.34, 8.08, 0.34, 17.59, 3.91, and 120 ng/ml, respectively. These values show that parasporal inclusions from this new subspecies have mosquitocidal toxicity comparable to that of inclusions isolated from B. thuringiensis subsp. israelensis. Solubilized and chymotrypsin-activated parasporal inclusions possessed low-level hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the crystals were composed of polypeptides of 77, 74, 72, 68, 55, 38, 35, 27, and 23 kDa. Analysis by Western blotting (immunoblotting) with polyclonal antisera raised against toxins purified from B. thuringiensis subsp. israelensis reveals that proteins in parasporal inclusions of subsp. jegathesan are distinct, because little cross-reactivity was shown. Analysis of the plasmid content of B. thuringiensis subsp. jegathesan indicates that the genes for toxin production may be located on 105- to 120-kb plasmids. Cry- clones that have been cured of these plasmids are nontoxic. Southern blot analysis of plasmid and chromosomal DNA from subsp. jegathesan showed little or low homology to the genes coding for CryIVA, CryIVB, and CryIVD from B. thuringiensis subsp. israelensis.
    Matched MeSH terms: Bacterial Proteins/isolation & purification*
  18. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ
    Appl Environ Microbiol, 2004 Dec;70(12):7010-7.
    PMID: 15574894
    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.
    Matched MeSH terms: Bacterial Proteins/metabolism*; Bacterial Proteins/pharmacology*
  19. Choo QC, Samian MR, Najimudin N
    Appl Environ Microbiol, 2003 Jun;69(6):3658-62.
    PMID: 12788777
    In this paper, we report the cloning and characterization of three Paenibacillus azotofixans DNA regions containing genes involved in nitrogen fixation. Sequencing analysis revealed the presence of nifB1H1D1K1 gene organization in the 4,607-bp SacI DNA fragment. This is the first report of linkage of a nifB open reading frame upstream of the structural nif genes. The second (nifB2H2) and third (nifH3) nif homologues are confined within the 6,350-bp HindIII and 2,840-bp EcoRI DNA fragments, respectively. Phylogenetic analysis demonstrated that NifH1 and NifH2 form a monophyletic group among cyanobacterial NifH proteins. NifH3, on the other hand, clusters among NifH proteins of the highly divergent methanogenic archaea.
    Matched MeSH terms: Bacterial Proteins/genetics*; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  20. Sayyed AH, Haward R, Herrero S, Ferré J, Wright DJ
    Appl Environ Microbiol, 2000 Apr;66(4):1509-16.
    PMID: 10742234
    Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links