Displaying publications 1 - 20 of 31 in total

  1. Loh Q, Bahara NH, Choong YS, Lim TS
    Anal. Biochem., 2012 Dec 1;431(1):54-6.
    PMID: 22975202 DOI: 10.1016/j.ab.2012.08.025
    The quality of a nucleotide-based library such as a synthetic antibody library is highly dependent on the diversity available. Diversity can be generated using degenerate oligonucleotides introduced during gene assembly. Conventional approaches to gene assembly are not efficient for oligonucleotides with long stretches of degeneracy. We propose an efficient alternative for simultaneous introduction of three randomized regions in a synthetic antibody gene via temperature cascading. The strategy takes advantage of DNA reannealing kinetics. The strategy can be adopted for generating diversity of gene inserts during the construction of nucleotide-based libraries.
  2. Chen Q, Narayanan K
    Anal. Biochem., 2011 Jul 1;414(1):169-71.
    PMID: 21396906 DOI: 10.1016/j.ab.2011.03.006
    The phage N15 protelomerase enzyme (TelN) is essential for the replication of its genome by resolution of its telRL domain, located within a telomerase occupancy site (tos), into hairpin telomeres. Isolation of TelN for in vitro processing of tos, however, is a highly complex process, requiring multiple purification steps. In this study a simplified protocol for crude total protein extraction is described that retains the tos-cleaving activity of TelN for at least 4 weeks, greatly simplifying in vitro testing of its activity. This protocol may be extended for functional analysis of other phage and bacterial proteins, particularly DNA-processing enzymes.
  3. An Y, Cipollo JF
    Anal. Biochem., 2011 Aug 1;415(1):67-80.
    PMID: 21545787 DOI: 10.1016/j.ab.2011.04.018
    Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)-TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006-2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.
  4. Yeang HY, Yusof F, Abdullah L
    Anal. Biochem., 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
  5. Ong KK, Khor HT, Tan DT
    Anal. Biochem., 1991 Aug 01;196(2):211-4.
    PMID: 1776669
    A rapid, easy, and sensitive method is described in this paper for the assay of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, a key enzyme in cholesterol biosynthesis. [14C]HMG CoA was used as the substrate and the product formed, i.e., [14C]mevalonate, was allowed to be converted to its lactone form (mevalonolactone) in the presence of HCl. The reaction mixture was applied to a column containing an anionic exchanger. The column was made up of QAE-Sephadex (A25, formate form) packed to a height of 4 cm in Pasteur pipets. Under these conditions, mevalonolactone was not retained by the column and was eluted with ammonium formate solution while HMG CoA, being negatively charged, was retained by the gel and eluted by HCl above 0.05 M. Determination of the amount of radioactivity in mevalonolactone was then used to quantitate the activity of HMG CoA reductase. This assay has been successfully used for determining the activity of this enzyme in a microsomal fraction prepared from the liver of the rat.
  6. Tan NH, Tan CS
    Anal. Biochem., 1988 May 1;170(2):282-8.
    PMID: 3394929
    A convenient acidimetric assay for phospholipase A using egg yolk suspension as substrate has been developed. The substrate mixture consists of 1 part egg yolk, 1 part 8.1 mM sodium deoxycholate, and 1 part 18 mM calcium chloride. Phospholipase A activity is measured by following the initial rate of pH change, which is linear between pH 8.0 and 7.75 and is proportional to enzyme concentration over a wide range. The assay is highly reproducible, with a coefficient of variation of 3%, and as sensitive as most established assays for phospholipase A. The assay uses inexpensive and easily available substrate and is simple to perform. It is particularly useful for monitoring phospholipase A activity in chromatography fractions.
  7. Chua EW, Miller AL, Kennedy MA
    Anal. Biochem., 2015 May 15;477:115-7.
    PMID: 25766577 DOI: 10.1016/j.ab.2015.02.023
    We compared four brands of microtubes with respect to their suitability for long-range polymerase chain reactions (PCRs). One of the four brands was found to have an inhibitory effect, decreasing PCR yields. The effect was universal across different PCR or enzyme systems. Increased ultraviolet absorbance suggests leaching of unknown chemical species into PCR mixtures. However, this could not be confirmed by high-performance liquid chromatography-mass spectrometry analysis. Nevertheless, our article demonstrates a clear impact of the choice of microtubes on long-range PCR success. Due consideration should be given to the PCR microtubes when determining optimal reaction conditions for long-range PCR.
  8. Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS
    Anal. Biochem., 2015 May 15;477:56-61.
    PMID: 25769419 DOI: 10.1016/j.ab.2015.02.026
    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
  9. Loh Q, Omar N, Glökler J, Lim TS
    Anal. Biochem., 2014 Oct 15;463:67-9.
    PMID: 24972268 DOI: 10.1016/j.ab.2014.06.012
    Immunoassays are often coupled to peroxidase activity for antigen detection. Sensitivity and speed of detection has been increased by the advent of hybrid methods such as immuno-PCR (polymerase chain reaction). However, a more simplified immunoassay that retains both colorimetric peroxidase detection and effective DNA amplification in a setting closer to field application conditions has been nonexistent. Here we describe a method that successfully combines a competitive immunoassay with the new isothermal quadruplex-primed amplification (QPA) to generate excess quadruplex reporter molecules with intrinsic peroxidase DNAzyme activity.
  10. Osahor AN, Tan CY, Sim EU, Lee CW, Narayanan K
    Anal. Biochem., 2014 Oct 1;462:26-8.
    PMID: 24929088 DOI: 10.1016/j.ab.2014.05.030
    When recombineering bacterial artificial chromosomes (BACs), it is common practice to design the ends of the donor molecule with 50 bp of homology specifying its insertion site. We demonstrate that desired recombinants can be produced using intermolecular homologies as short as 15 bp. Although the use of shorter donor end regions decreases total recombinants by several fold, the frequency of recombinants with correctly inserted donor molecules was high enough for easy detection by simple polymerase chain reaction (PCR) screening. This observation may have important implications for the design of oligonucleotides for recombineering, including significant cost savings, especially for high-throughput projects that use large quantities of primers.
  11. Narayanan K, Lee CW, Radu A, Sim EU
    Anal. Biochem., 2013 Aug 15;439(2):142-4.
    PMID: 23608053 DOI: 10.1016/j.ab.2013.04.010
    Successful gene delivery into mammalian cells using bactofection requires entry of the bacterial vector via cell surface integrin receptors followed by release of plasmid DNA into the cellular environment. We show, for the first time, that addition of the DNA transfection reagent Lipofectamine improves entry of invasive Escherichia coli into HeLa cells and enhances up to 2.8-fold green fluorescent protein (GFP) expression from a reporter plasmid. The addition of Lipofectamine may be applicable to other bacterial vectors to increase their DNA delivery efficiency into mammalian cells.
  12. Chew FN, Tan WS, Ling TC, Tan CS, Tey BT
    Anal. Biochem., 2009 Jan 15;384(2):353-5.
    PMID: 18952038 DOI: 10.1016/j.ab.2008.10.010
    Green fluorescent protein (GFP) is a versatile reporter protein and has been widely used in biological research. However, its quantitation requires expensive equipment such as a spectrofluorometer. In the current study, a gel documentation imaging system using a native polyacrylamide gel for the quantitation of GFP was developed. The assay was evaluated for its precision, linearity, reproducibility, and sensitivity in the presence of Escherichia coli cells and was compared with the spectrofluorometric method. Using this newly established, gel-based imaging technique; the amount of GFP can be quantified accurately.
  13. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N
    Anal. Biochem., 2009 May 1;388(1):28-32.
    PMID: 19454217 DOI: 10.1016/j.ab.2009.02.005
    An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on beta-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of alpha-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and alpha-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n=8). The biosensor was found to be stable for at least 1 month when stored dry at 4 degrees C.
  14. Daud SS, Ibrahim K, Choong SS, Vengidasan L, Chong LA, Ariffin H
    Anal. Biochem., 2010 Feb 15;397(2):181-5.
    PMID: 19822126 DOI: 10.1016/j.ab.2009.10.008
    Following hematopoietic stem cell transplantation (HSCT), it is important to determine whether engraftment is successful and to track the dynamic changes of the graft. Tandem repeats such as minisatellites and microsatellites are currently the most established markers for chimerism application. We have developed a reliable method to quantitatively evaluate engraftment status in post-allogeneic HSCT patients using variable number of tandem repeat (VNTR) markers and "lab-on-a-chip" microfluidic electrophoresis technology. Following identification of an informative marker by conventional polymerase chain reaction (PCR), donor chimerism percentage was calculated based on a standard curve generated from artificially mixed patient-donor DNA-specific alleles in serial dilutions. All PCR products were mixed with commercial gel dye and loaded into Agilent DNA 1000 microfluidic LabChips for DNA sizing and quantitation. In 44 patients, separation of pretransplant and donor DNA fragments was resolved clearly and accomplished rapidly within 30min. Chimerism analysis using this platform is able to detect an amount as low as 6.3% donor DNA with acceptable coefficient of variation values. We also demonstrated concordant chimerism analysis findings using both microchip tandem repeats and real-time PCR quantitation of insertion-deletion polymorphisms. This microchip platform obviates the need for fluorescently labeled primers or any post-PCR sample manipulation. Quantitative monitoring of post-HSCT chimerism status using microfluidic electrophoresis is a useful tool for both large- and small-scale post-HSCT chimerism centers.
  15. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal. Biochem., 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
  16. Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A
    Anal. Biochem., 2016 09 15;509:135-141.
    PMID: 27402177 DOI: 10.1016/j.ab.2016.06.030
    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.
  17. Osahor A, Deekonda K, Lee CW, Sim EU, Radu A, Narayanan K
    Anal. Biochem., 2017 10 01;534:46-48.
    PMID: 28693990 DOI: 10.1016/j.ab.2017.07.008
    Sample preparation for scanning electron microscope analysis involves reagents and equipment that are expensive and often hazardous. Here we demonstrate a circumvention of Osmium tetroxide and critical point drying, greatly reducing the duration, complexity and cost of the process. We captured early stage interactions of invasive-bacteria and HeLa cells during the process of bacteria-mediated gene delivery and illustrate sufficient clarity can be obtained using this procedure to preserve and clearly visualize relevant cellular structures. This protocol is significantly cheaper and easier to adapt compared to conventional methods, and will allow routine preparation/viewing of eukaryotic or bacterial samples for basic morphological studies.
  18. Lee MJ, Ramanathan S, Mansor SM, Yeong KY, Tan SC
    Anal. Biochem., 2018 02 15;543:146-161.
    PMID: 29248503 DOI: 10.1016/j.ab.2017.12.021
    A method using solid phase extraction and liquid chromatography-tandem mass spectrometry to quantitatively detect mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine in human urine samples was developed and validated. The relevant metabolites were identified using multiple reaction monitoring in positive ionization mode using nalorphine as an internal standard. The method was validated for accuracy, precision, recovery, linearity, and lower limit of quantitation. The intra- and inter-day accuracy and precision were found in the range of 83.6-117.5% with coefficient of variation less than 13%. The percentage of recovery for mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine was within the range of 80.1-118.9%. The lower limit of quantification was 1 ng/mL for mitragynine, 2 ng/mL for 16-carboxy mitragynine, and 50 ng/mL for 9-O-demethyl mitragynine. The developed method was reproducible, high precision and accuracy with good linearity and recovery for mitragynine, 16-carboxy mitragynine, and 9-O-demethyl mitragynine in human urine.
  19. Tuma Sabah J, Zulkifli RM, Shahir S, Ahmed F, Abdul Kadir MR, Zakaria Z
    Anal. Biochem., 2018 05 15;549:72-79.
    PMID: 29524380 DOI: 10.1016/j.ab.2018.03.004
    Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links