Displaying all 3 publications

Abstract:
Sort:
  1. Mat Luwi NE, Kadir R, Mohamud R, A Garcia-Santana ML, Acevedo R, Sarmiento ME, et al.
    Int J Mycobacteriol, 2020 8 31;9(3):261-267.
    PMID: 32862158 DOI: 10.4103/ijmy.ijmy_82_20
    Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice.

    Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs.

    Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs.

    Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.

    Matched MeSH terms: Bone Marrow Cells/immunology
  2. Menon BS, Dasgupta A, Jackson N
    Pediatr Hematol Oncol, 1998 Mar-Apr;15(2):175-8.
    PMID: 9592844
    This study reviewed the immunophenotyping results of children with acute leukemia in Kelantan, Malaysia. In the 3.5-year period (January 1994 to June 1997), 45 cases were identified. All children were under the age of 12 years and the predominant ethnic group was Malay. Thirty-six cases (80%) were acute lymphoblastic leukemia (ALL) and 9 cases (20%) were acute myeloblastic leukemia (AML). Of the ALL cases, 3% were of B-cell and 22% of T-cell origin, and 96% of the B-lineage ALL were CD10 positive. All the AML cases expressed CD33 and 78% were positive for CD13. The incidence of mixed-lineage leukemias was 13.8% for My+ ALL and 11.1% for Ly+ AML.
    Matched MeSH terms: Bone Marrow Cells/immunology
  3. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F
    Cell Immunol, 2008 Feb;251(2):131-6.
    PMID: 18502411 DOI: 10.1016/j.cellimm.2008.04.009
    Mesenchymal stem cells (MSC) are non-haematopoietic stem cells that are capable of differentiating into tissues of mesodermal origin. MSC play an important role in supporting the development of fetal and adult haematopoiesis. More recently, MSC have also been found to exhibit inhibitory effect on T cell responses. However, there is little information on the mechanism of this immunosuppression and our study addresses this issue by targeting T cell functions at various level of immune responses. We have generated MSC from human adult bone marrow (BM) and investigated their immunoregulatory function at different phases of T cell responses. MSC showed the ability to inhibit mitogen (CD3/CD28 microbeads)-activated T cell proliferation in a dose-dependent manner. In order to evaluate the specificity of this immunosuppression, the proliferation of CD4(+) and CD8(+) cells were measured. MSC equally inhibit CD4(+) and CD8(+) subpopulations of T cells in response to PHA stimulation. However, the antiproliferative effect of MSC is not due to the inhibition of T cell activation. The expression of early activation markers of T cells, namely CD25 and CD69 were not significantly altered by MSC at 24, 48 and 72h. Furthermore, the immunosuppressive effect of MSC mainly targets T cell proliferation rather than their effector function since cytotoxicity of T cells is not affected. This work demonstrates that the immunosuppressive effect of MSC is exclusively a consequence of an anti-proliferative activity, which targets T cells of different subpopulations. For this reason, they have the potential to be exploited in the control of unwanted immune responses such as graft versus host disease (GVHD) and autoimmunity.
    Matched MeSH terms: Bone Marrow Cells/immunology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links