Displaying all 5 publications

Abstract:
Sort:
  1. Lim YC, Budin SB, Othman F, Latip J, Zainalabidin S
    Cardiovasc Toxicol, 2017 Jul;17(3):251-259.
    PMID: 27402292 DOI: 10.1007/s12012-016-9379-6
    Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dtmax, suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca2+channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.
    Matched MeSH terms: Calcium Signaling/physiology
  2. Poznanski RR
    J Integr Neurosci, 2010 Sep;9(3):299-335.
    PMID: 21064220
    Optical imaging of dendritic calcium signals provided evidence of starburst amacrine cells exhibiting calcium bias to somatofugal motion. In contrast, it has been impractical to use a dual-patch clamp technique to record membrane potentials from both proximal dendrites and distal varicosities of starburst amacrine cells in order to unequivocally prove that they are directionally sensitive to voltage, as was first suggested almost two decades ago. This paper aims to extend the passive cable model to an active cable model of a starburst amacrine cell that is intrinsically dependent on the electrical properties of starburst amacrine cells, whose various macroscopic currents are described quantitatively. The coupling between voltage and calcium just below the membrane results in a voltage-calcium system of coupled nonlinear Volterra integral equations whose solutions must be integrated into a prescribed model for example, for a synaptic couplet of starburst amacrine cells. Networks of starburst amacrine cells play a fundamental role in the retinal circuitry underlying directional selectivity. It is suggested that the dendritic plexus of starburst amacrine cells provides the substrate for the property of directional selectivity, while directional selectivity is a property of the exclusive layerings and confinement of their interconnections within the sublaminae of the inner plexiform layer involving cone bipolar cells and directionally selective ganglion cells.
    Matched MeSH terms: Calcium Signaling/physiology
  3. Poznanski RR
    J Integr Neurosci, 2010 Sep;9(3):283-97.
    PMID: 21064219
    A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.
    Matched MeSH terms: Calcium Signaling/physiology*
  4. Pingguan-Murphy B, El-Azzeh M, Bader DL, Knight MM
    J Cell Physiol, 2006 Nov;209(2):389-97.
    PMID: 16883605
    Mechanical loading modulates cartilage homeostasis through the control of matrix synthesis and catabolism. However, the mechanotransduction pathways through which chondrocytes detect different loading conditions remain unclear. The present study investigated the influence of cyclic compression on intracellular Ca2+ signalling using the well-characterised chondrocyte-agarose model. Cells labelled with Fluo4 were visualised using confocal microscopy following a period of 10 cycles of compression between 0% and 10% strain. In unstrained agarose constructs, not subjected to cyclic compression, a subpopulation of approximately 45% of chondrocytes exhibited spontaneous global Ca2+ transients with mean transient rise and fall times of 19.4 and 29.4 sec, respectively. Cyclic compression modulated global Ca2+ signalling by increasing the percentage of cells exhibiting Ca2+ transients (population modulation) and/or reducing the rise and fall times of these transients (transient shape modulation). The frequency and strain rate of compression differentially modulated these Ca2+ signalling characteristics providing a potential mechanism through which chondrocytes may distinguish between different loading conditions. Treatment with apyrase, gadolinium and the P2 receptor blockers, suramin and basilen blue, significantly reduced the percentage of cells exhibiting Ca2+ transients following cyclic compression, such that the mechanically induced upregulation of Ca2+ signalling was completely abolished. Thus cyclic compression appears to activate a purinergic pathway involving the release of ATP followed by the activation of P2 receptors causing a combination of extracellular Ca2+ influx and intracellular Ca2+ release. Knowledge of this fundamental cartilage mechanotransduction pathway may lead to improved therapeutic strategies for the treatment of cartilage damage and disease.
    Matched MeSH terms: Calcium Signaling/physiology*
  5. Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, et al.
    Physiol Rep, 2019 Nov;7(22):e14260.
    PMID: 31782255 DOI: 10.14814/phy2.14260
    We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
    Matched MeSH terms: Calcium Signaling/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links