BACKGROUND: Asthma is a complicated network of inflammatory reactions. It is classified into mild, moderate, and severe persistent asthma. The success of asthma therapy relies much on understanding the underlying mechanisms of inflammation at each stage of asthma severity. The aim of this study was to explore the differences in apoptotic potential, CD4/CD8 ratio, memory compartment, and T- helper (Th) 1 and 2 profile of peripheral blood lymphocytes (PBL) in patients with mild intermittent asthma and severe persistent asthma during exacerbation periods.
RESULTS: Four research lines were investigated and compared among mild asthmatics, severe asthmatics, and healthy groups by applying immunocytochemical staining of PBL. Antiapoptotic and proapoptotic proteins with Bcl-2/Bax ratio, CD4, CD8 markers with CD4+/CD8+ ratio, CD45RO+, CD45RA+ markers with memory/naive ratio (CD45RO+/CD45RA+). Th2/Th1 cytokines balance represented by IL-4/IFN-gamma ratio was measured by enzyme-linked immunosorbent assay (ELISA) for in vitro PBL cytokine synthesis. It was found that Bcl-2/Bax ratio was higher in severe than in mild asthmatics which in turn was higher than in healthy group. And memory/naive ratio of PBL was higher in severe than in mild asthmatics. Moreover, memory cells, CD45RO+ and CD45RO+/CD45RA+ ratio were correlated directly with Bcl-2/Bax, in severe and mild asthma patients. In contrast, CD4+/CD8+ ratio was not changed significantly among healthy group, mild and severe asthmatics. However, CD8+ cells were correlated directly with memory cells, CD45RO+, in severe asthmatics only. Interestingly, the dominant profile of cytokines appeared to change from T helper 2 (Th2) in mild asthmatics to T helper 1 (Th1) in severe asthmatics where the lowest in vitro IL-4/IFN-gamma ratio and highest IFN-gamma were found.
CONCLUSION: It was concluded that the underlying mechanisms of inflammation might vary greatly with asthma stage of severity. Mild intermittent asthma is mainly Th2 allergen-oriented reaction during exacerbations with good level of apoptosis making the inflammation as self-limiting, while in severe persistent asthma, the inflammatory reaction mediated mainly by Th1 cytokines with progressive loss of apoptosis leading to longer exacerbations, largely expanded memory cells, CD45RO+, leading to persistent baseline inflammation.
Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.