Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.
Beta-glucosidase (BGL) is an important industrial enzyme for food, waste and biofuel processing. Jeotgalibacillus is an understudied halophilic genus, and no beta-glucosidase from this genus has been reported. A novel beta-glucosidase gene (1344 bp) from J. malaysiensis DSM 28777T was cloned and expressed in E. coli. The recombinant protein, referred to as BglD5, consists of a total 447 amino acids. BglD5 purified using a Ni-NTA column has an apparent molecular mass of 52 kDa. It achieved the highest activity at pH 7 and 65 °C. The activity and stability were increased when CaCl2 was supplemented to the enzyme. The enzyme efficiently hydrolyzed salicin and (1 → 4)-beta-glycosidic linkages such as in cellobiose, cellotriose, cellotetraose, cellopentose, and cellohexanose. Similar to many BGLs, BglD5 was not active towards polysaccharides such as Avicel, carboxymethyl cellulose, Sigmacell cellulose 101, alpha-cellulose and xylan. When BglD5 blended with Cellic® Ctec2, the total sugars saccharified from oil palm empty fruit bunches (OPEFB) was enhanced by 4.5%. Based on sequence signatures and tree analyses, BglD5 belongs to the Glycoside Hydrolase family 1. This enzyme is a novel beta-glucosidase attributable to its relatively low sequence similarity with currently known beta-glucosidases, where the closest characterized enzyme is the DT-Bgl from Anoxybacillus sp. DT3-1.