Displaying all 4 publications

Abstract:
Sort:
  1. Thayan R, Yusof MA, Saat Z, Sekaran SD, Wang SM
    Methods Mol Biol, 2016;1426:11-9.
    PMID: 27233257 DOI: 10.1007/978-1-4939-3618-2_2
    Molecular surveillance of Chikungunya virus (CHIKV) is important as it provides data on the circulating CHIKV genotypes in endemic countries and enabling activation of measures to be taken in the event of a pending outbreak. Molecular surveillance is carried out by first detecting CHIKV in susceptible humans or among field-caught mosquitoes. This is followed by sequencing a selected region of the virus which will provide evidence on the source of the virus and possible association of the virus to increased cases of Chikungunya infections.
    Matched MeSH terms: Chikungunya Fever/diagnosis*
  2. Sam IC, Kümmerer BM, Chan YF, Roques P, Drosten C, AbuBakar S
    Vector Borne Zoonotic Dis, 2015 Apr;15(4):223-30.
    PMID: 25897809 DOI: 10.1089/vbz.2014.1680
    Chikungunya virus (CHIKV) is an Aedes-borne alphavirus, historically found in Africa and Asia, where it caused sporadic outbreaks. In 2004, CHIKV reemerged in East Africa and spread globally to cause epidemics, including, for the first time, autochthonous transmission in Europe, the Middle East, and Oceania. The epidemic strains were of the East/Central/South African genotype. Strains of the Asian genotype of CHIKV continued to cause outbreaks in Asia and spread to Oceania and, in 2013, to the Americas. Acute disease, mainly comprising fever, rash, and arthralgia, was previously regarded as self-limiting; however, there is growing evidence of severe but rare manifestations, such as neurological disease. Furthermore, CHIKV appears to cause a significant burden of long-term morbidity due to persistent arthralgia. Diagnostic assays have advanced greatly in recent years, although there remains a need for simple, accurate, and affordable tests for the developing countries where CHIKV is most prevalent. This review focuses on recent important work on the epidemiology, clinical disease and diagnostics of CHIKV.
    Matched MeSH terms: Chikungunya Fever/diagnosis
  3. Soh LT, Squires RC, Tan LK, Pok KY, Yang H, Liew C, et al.
    Western Pac Surveill Response J, 2016 04 22;7(2):26-34.
    PMID: 27508088 DOI: 10.5365/WPSAR.2016.7.1.002
    OBJECTIVE: To conduct an external quality assessment (EQA) of dengue and chikungunya diagnostics among national-level public health laboratories in the Asia Pacific region following the first round of EQA for dengue diagnostics in 2013.

    METHODS: Twenty-four national-level public health laboratories performed routine diagnostic assays on a proficiency testing panel consisting of two modules. Module A contained serum samples spiked with cultured dengue virus (DENV) or chikungunya virus (CHIKV) for the detection of nucleic acid and DENV non-structural protein 1 (NS1) antigen. Module B contained human serum samples for the detection of anti-DENV antibodies.

    RESULTS: Among 20 laboratories testing Module A, 17 (85%) correctly detected DENV RNA by reverse transcription polymerase chain reaction (RT-PCR), 18 (90%) correctly determined serotype and 19 (95%) correctly identified CHIKV by RT-PCR. Ten of 15 (66.7%) laboratories performing NS1 antigen assays obtained the correct results. In Module B, 18/23 (78.3%) and 20/20 (100%) of laboratories correctly detected anti-DENV IgM and IgG, respectively. Detection of acute/recent DENV infection by both molecular (RT-PCR) and serological methods (IgM) was available in 19/24 (79.2%) participating laboratories.

    DISCUSSION: Accurate laboratory testing is a critical component of dengue and chikungunya surveillance and control. This second round of EQA reveals good proficiency in molecular and serological diagnostics of these diseases in the Asia Pacific region. Further comprehensive diagnostic testing, including testing for Zika virus, should comprise future iterations of the EQA.

    Matched MeSH terms: Chikungunya Fever/diagnosis*
  4. Maharajan MK, Ranjan A, Chu JF, Foo WL, Chai ZX, Lau EY, et al.
    Clin Rev Allergy Immunol, 2016 Dec;51(3):383-394.
    PMID: 27236440
    The Zika virus outbreaks highlight the growing importance need for a reliable, specific and rapid diagnostic device to detect Zika virus, as it is often recognized as a mild disease without being identified. Many Zika virus infection cases have been misdiagnosed or underreported because of the non-specific clinical presentation. The aim of this review was to provide a critical and comprehensive overview of the published peer-reviewed evidence related to clinical presentations, various diagnostic methods and modes of transmission of Zika virus infection, as well as potential therapeutic targets to combat microcephaly. Zika virus is mainly transmitted through bites from Aedes aegypti mosquito. It can also be transmitted through blood, perinatally and sexually. Pregnant women are advised to postpone or avoid travelling to areas where active Zika virus transmission is reported, as this infection is directly linked to foetal microcephaly. Due to the high prevalence of Guillain-Barre syndrome and microcephaly in the endemic area, it is vital to confirm the diagnosis of Zika virus. Zika virus infection had been declared as a public health emergency and of international concern by the World Health Organisation. Governments and agencies should play an important role in terms of investing time and resources to fundamentally understand this infection so that a vaccine can be developed besides raising awareness.
    Matched MeSH terms: Chikungunya Fever/diagnosis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links