Cardiovascular disease (CVD) is an under-recognized major health problem among women in South-East Asia. The prevalence of cardiovascular risk factors such as hypertension, diabetes mellitus, dyslipidemia, physical inactivity, and being overweight or obese has shown a significantly increasing trend among women in the region, with the exception of Singapore. The problem is compounded by low awareness that CVD is a health problem for women as well as for men, by misconceptions about the disease, and by the lack of suitable, locally available health literature. Efforts have been made by the national heart associations and other organizations to increase heart health awareness and promote healthy lifestyles. Singapore initiated these prevention programs in the early 1990s and has been successful in reducing the prevalence of cardiovascular risk factors. The governments of the region, in accordance with the Noncommunicable Disease Alliance, have begun implementing appropriate preventive strategies and improving health-delivery systems. However, psychological, social, and cultural barriers to cardiovascular health awareness in women need to be addressed before these programs can be fully and successfully implemented.
CD36 (cluster of differentiation 36) is a membrane protein involved in lipid metabolism and has been linked to pathological conditions associated with metabolic disorders, such as diabetes and dyslipidemia. A case-control study was conducted and included 177 patients with type-2 diabetes mellitus (T2DM) and 173 control subjects to study the involvement of CD36 gene rs1761667 (G>A) and rs1527483 (C>T) polymorphisms in the pathogenesis of T2DM and dyslipidemia among Jordanian population. Lipid profile, blood sugar, gender and age were measured and recorded. Also, genotyping analysis for both polymorphisms was performed. Following statistical analysis, 10 different neural networks and machine learning (ML) tools were used to predict subjects with diabetes or dyslipidemia. Towards further understanding of the role of CD36 protein and gene in T2DM and dyslipidemia, a protein-protein interaction network and meta-analysis were carried out. For both polymorphisms, the genotypic frequencies were not significantly different between the two groups (p > 0.05). On the other hand, some ML tools like multilayer perceptron gave high prediction accuracy (≥ 0.75) and Cohen's kappa (κ) (≥ 0.5). Interestingly, in K-star tool, the accuracy and Cohen's κ values were enhanced by including the genotyping results as inputs (0.73 and 0.46, respectively, compared to 0.67 and 0.34 without including them). This study confirmed, for the first time, that there is no association between CD36 polymorphisms and T2DM or dyslipidemia among Jordanian population. Prediction of T2DM and dyslipidemia, using these extensive ML tools and based on such input data, is a promising approach for developing diagnostic and prognostic prediction models for a wide spectrum of diseases, especially based on large medical databases.
BACKGROUND: Type 2 diabetes is associated with early development of endothelial dysfunction. Patients present with typical dyslipidemia (predominantly high levels of triglycerides [TG] and low levels of high-density lipoprotein cholesterol [HDL-C]) or mixed hypercholesterolemia (high levels of low-density lipoprotein cholesterol [LDL-C] and TG with low HDL-C). Normal levels include LDL-C < 100 mg/dL, TG < 135 mg/dL, and HDL-C > 40 mg/dL for men and >50 mg/dL for women.
OBJECTIVE: To determine the effects of 8 weeks' administration of fenofibrate on inflammatory markers, metabolic parameters, and endothelial dysfunction.
METHODS: We administered micronized fenofibrate (Laboratories Fourneir S.A Dijon, France) daily for 8 weeks to 40 dyslipidemic, type 2 diabetes patients with equal numbers in each arm of the typical or mixed dyslipidemia groups. Noninvasive endothelial function assessments were performed and serum inflammatory markers obtained before and after treatment.
RESULTS: The typical group demonstrated significantly greater TG reduction and HDL-C increment, ie, 56% vs, 21.3% (P < .005) and 21% vs. 7.6% (P = .001), respectively, compared with the mixed group. There was greater LDL-C reduction within the mixed group compared with the typical group 21.0% vs. 2.2% (P < .05). Endothelial dysfunction was present in both groups at baseline. After treatment, the typical group demonstrated significant improvement in resting brachial diameter (3.9 mm [interquartile range {IQR} 3.3-4.7] to 4.2 mm [IQR 3.4-4.8], P = .001) compared with no change within the mixed group (3.6 mm [IQR 3.1-5.4] to 3.7 mm [IQR 3.1-5.3], P = .26). Flow-mediated diameter improved significantly in both groups. The mixed group had significantly greater levels of hs-CRP at baseline but no changes throughout the study. The mixed group demonstrated an increase in vascular adhesion molecule-1 from 706 ng/mL (IQR 566-1195) to 845 ng/mL (637-1653; P = .01), a reduction of tumor necrosis factor-α from 7.0 pg/mL (IQR 1.0-43.5) to 2.5 pg/mL (IQR 1.5-13.5; P = .04) throughout the study.
CONCLUSIONS: We effectively compared 8 weeks of fenofibrate therapy in type 2 diabetics with contrasting lipid abnormalities. The typical dyslipidemia group showed significantly greater lipid improvements compared with the mixed dyslipidemia group. Both groups had improvements in endothelial functions that were independent of the lipid levels. We concluded that fibrate therapy in type 2 diabetics is beneficial, especially those with typical dyslipidemia and extends beyond its lipid lowering properties.
KEYWORDS: Endothelial dysfunction; Fenofibrate; High-density lipoprotein cholesterol; Low density lipoprotein; Noninvasive endothelial function assessments; Triglyceride; Vascular cell adhesion molecule-1; hsCRP