Transplantation of cultivated limbal epithelium on substrates such as amniotic membrane is an established treatment for severe ocular surface disease with limbal stem cell deficiency. In this study, we adapted an established method to generate sheets of limbal epithelium on amniotic membrane and characterized the cells contained in these sheets and tested them for safety with regard to microbial contamination. Human limbal biopsies were cultivated on denuded amniotic membranes. After three weeks of culture, the phenotypes of cultivated cells were analyzed by immunohistochemistry and real-time RT-PCR for the expression of a panel of specific markers. Cultivated limbal epithelial cell sheets were also analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Sterility tests and mycoplasma assays were conducted for the safety of product. A confluent layer of polygonal cells was formed in 2 weeks and 1-3 stratified layer of cells were observed after three weeks of culture. Cultivated cells were positive for p63, K3, K19, and involucrin but negative for K14, integrin alpha9 and ABCG2 when analyzed by immunohistochemistry. Expression of molecular markers was detectable with real-time RT-PCR. SEM showed multilayer of flat squamous polygonal epithelial cells. Desmosomal and hemidesmosomal attachments were evident. Our study showed that cultivated limbal epithelium consists of limbal progenitors as well as differentiated corneal epithelial cells. SEM and TEM analysis showed cultivated cells demonstrated typical features of corneal epithelium. The risk of contamination is low and can be prevented by culturing the cells in a clean room facility complying to Good Manufacturing Practice standard.