A "single-trial" signal subspace approach for extracting visual evoked potential (VEP) from the ongoing 'colored' electroencephalogram (EEG) noise is proposed. The algorithm applies the generalized eigendecomposition on the covariance matrices of the VEP and noise to transform them jointly into diagonal matrices in order to avoid a pre-whitening stage. The proposed generalized subspace approach (GSA) decomposes the corrupted VEP space into a signal subspace and noise subspace. Enhancement is achieved by removing the noise subspace and estimating the clean VEPs only from the signal subspace. The validity and effectiveness of the proposed GSA scheme in estimating the latencies of P100's (used in objective assessment of visual pathways) are evaluated using real data collected from Selayang Hospital in Kuala Lumpur. The performance of GSA is compared with the recently proposed single-trial technique called the Third Order Correlation (TOC).
Educational psychology research has linked fluid intelligence with learning and memory abilities and neuroimaging studies have specifically associated fluid intelligence with event related potentials (ERPs). The objective of this study is to find the relationship of ERPs with learning and memory recall and predict the memory recall score using P300 (P3) component.