PMID: 19163891 DOI: 10.1109/IEMBS.2008.4650388

Abstract

A "single-trial" signal subspace approach for extracting visual evoked potential (VEP) from the ongoing 'colored' electroencephalogram (EEG) noise is proposed. The algorithm applies the generalized eigendecomposition on the covariance matrices of the VEP and noise to transform them jointly into diagonal matrices in order to avoid a pre-whitening stage. The proposed generalized subspace approach (GSA) decomposes the corrupted VEP space into a signal subspace and noise subspace. Enhancement is achieved by removing the noise subspace and estimating the clean VEPs only from the signal subspace. The validity and effectiveness of the proposed GSA scheme in estimating the latencies of P100's (used in objective assessment of visual pathways) are evaluated using real data collected from Selayang Hospital in Kuala Lumpur. The performance of GSA is compared with the recently proposed single-trial technique called the Third Order Correlation (TOC).

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.