AIM OF THIS STUDY: This study aimed to investigate the potential toxicity effects of A. hierochuntica in pregnant Sprague-Dawley rats and their developing foetuses.
MATERIALS AND METHODS: Experiments were conducted in accordance to the Organisation for Economic Co-operation and Development guideline 414. Animals were randomly divided into four groups (n = 10 females per group): negative control (received the vehicle only), experimental animals received 250, 500, and 1000 mg/kg A. hierochuntica aqueous extracts (AHAE), respectively. Treatment was administered daily by oral gavage from gestational day (GD) 6-20, and caesarian section performed on GD21.
RESULTS: There were significant reduction in the corrected maternal weight gain of dams and body weight of foetuses in the lowest and highest dose of AHAE-treated animals compared to the control. These findings were associated with the increase in anogenital distance index and multiple congenital anomalies observed in some of the offspring. On the other hand, rats treated with 500 mg/kg showed higher embryonic survival rate with absence of significant treatment-related effect.
CONCLUSION: Findings showed that highest and lowest doses of AHAE have prenatal toxicity effects in SD rats. Therefore, AHAE is potentially harmful to the developing foetuses especially when consumed during the period of implantation and organogenesis. As for the rats treated with 500 mg/kg AHAE, there was no significant treatment-related effect. Hence, we postulate that this finding suggests that the disruption on the hormonal regulation could have been compensated by negative feedback response. The compensated effects of AHAE at 500 mg/kg and the presence of lowest observed adverse effect level (LOAEL) at 250 mg/kg has resulted in a non-monotonous dose response curve (NMDRC), which complicates the determination of the value of no-observed-adverse effect level (NOAEL).
METHODS: We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B.
RESULTS: Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes.
CONCLUSION: We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.