Displaying all 2 publications

Abstract:
Sort:
  1. Thomas B, Gupta K
    J Esthet Restor Dent, 2017 Nov 12;29(6):435-441.
    PMID: 28703476 DOI: 10.1111/jerd.12317
    OBJECTIVE: Nano-hydroxyapatite-added GIC has been developed to improve the physical properties of conventional GIC. However, biological response of periodontal cells to this potentially useful cervical restorative material has been unexplored. The aim of this study was to investigate the in vitro response of human periodontal ligament fibroblasts to hydroxyapatite-added GIC.

    MATERIALS AND METHODS: Three categories of materials, namely, test group 1 (cGIC or type IX GIC), test group 2 (HA-GIC or hydroxyapatite-added GIC), and positive control (glass cover slips) were incubated with human periodontal ligament fibroblasts. The samples were viewed under scanning electron microscope to study the morphological characteristics of fibroblasts. Additionally, elemental analysis was performed to differentiate between the two test groups based on surface chemical composition.

    RESULTS: Test group 1 (cGIC) exhibited cells with curled up morphology, indicative of poor attachment to the substrate. Test group 2 (Ha-GIC) exhibited cells with flattened morphology and numerous cellular extensions such as lamellipodia and blebs, indicative of good attachment to the substrate. The test group 2 (Ha-GIC) demonstrated higher surface elemental percentages of calcium and phosphorus.

    CONCLUSION: Within the limitations of this study, it may be concluded that hydroxyapatite-added GIC is more biocompatible than conventional GIC (type IX), probably attributed to high elemental percentages of calcium and phosphorus.

    CLINICAL SIGNIFICANCE: The search for an ideal cervical restorative dental material has been ever elusive. Hydroxyapatite-added GIC is a simple and economical dental material to fabricate from basic conventional GIC. The results from this study strengthen its candidature for cervical and root surface restorations which may later require soft tissue augmentation. The possibility of connective tissue adhesion to this material is an exciting prospect in the field of periorestorative dentistry.

    Matched MeSH terms: Glass Ionomer Cements/pharmacology*
  2. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Glass Ionomer Cements/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links