The effects of ovariectomy and hormone replacement in control and carcinogen treated female rats were investigated by measuring whole blood and liver glutathione (WGSH, HGSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GRx) and histological evaluation. Hepatocarcinogenesis was induced by diethylnitrosamine and 2-acetylaminofluorene. In control rats not receiving carcinogen, ovariectomy significantly increased the GST and GRx activities. Replacement with either estrogen or progesterone reduced the GST activities to below intact female values whereas replacement of both hormones together brought the GST activities to that of intact females. GRx activities were brought to intact female values by replacement with estrogen or progesterone, either singly or in combination. Neither ovariectomy nor sex hormone/s replacement influenced the levels of WGSH, HGSH and GPx activities. Carcinogen administration to intact rats increased all the parameters measured. Ovariectomized rats treated with carcinogen showed lower GPx and GRx activities at 2 mths. However, replacement with either progesterone or combined estrogen and progesterone increased GPx and GRx activities to original values. On the other hand GST and GPx activities in ovariectomized rats which had carcinogen treatment were lower than intact rats after 5 mths. Replacement with hormones either singly or both brought GST and GPx activities up to intact rat levels receiving carcinogen. The levels of WGSH, HGSH and GRx activities (5 mths) in carcinogen treated rats were not influenced by ovariectomy and/or hormone/s replacement. The results from this study suggested that ovariectomy reduced the severity of hepatocarcinogenesis which was restored by sex hormone/s replacement.
Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.