Citizen science-based research has been used effectively to estimate animal abundance and breeding patterns, to monitor animal movement, and for biodiversity conservation and education. Here, we evaluate the feasibility of using social media observations to assess the distribution of small apes in Peninsular Malaysia. We searched for reports of small ape observations in Peninsular Malaysia on social media (e.g., blogs, Facebook, Instagram, Twitter, YouTube, iNaturalist, etc.), and also used online, radio, print messaging, and word of mouth to invite citizen scientists such as birders, amateur naturalists, hikers, and other members of the public to provide information about small ape observations made during their activities. These reports provided new information about the occurrence of all three species of small apes (Hylobates agilis, Hylobates lar, and Symphalangus syndactylus) in Peninsular Malaysia. Social media users reported observations of small apes in almost every state. Despite the fact that small apes are believed to occur primarily in the interior of large forested areas, most observations were from fairly small (<100 km2 ) forests near areas of high traffic and high human population (roads and urban areas). This suggests that most outdoor enthusiasts primarily visit well-traveled and easily accessible areas, which results in biased sampling if only incidental observations reported on social media are used. A more targeted approach specifically soliciting reports from citizen scientists visiting large, less-accessible forests may result in better sampling in these habitats. Social media reports indicated the presence of small apes in at least six habitats where they had not been previously reported. We verified the reported data based on whether reports included a date, location, and uploaded photographs, videos and/or audio recordings. Well-publicized citizen science programs may also build awareness and enthusiasm about the conservation of vulnerable wildlife species.
Studies of the siamang (Hylobates syndactylus continentis) and the lar gibbon (Hylobates lar lar) where they co-occur in mainland Asia have demonstrated interspecific dietary segregation based on body size and have suggested that observed levels of frugivory represent metabolically based maxima for these species. I studied sympatric groups of siamang (H. s. syndactylus) and lar gibbons (H. l. vestitus) at Ketambe in northern Sumatra (Indonesia) in order to assess the magnitude of within- and between-species variation in diets. The insular subspecies are considerably more frugivorous (60-70% of feeding time) than mainland conspecifics (35-50%). This is primarily because Sumatran hylobatids spend about twice as much time (approx. 45% of feeding) eating fig fruits (Ficus spp., Moraceae). A higher density of figs at Ketambe (compared to Kuala Lompat) may account for this behavioral difference. Enhanced frugivory has been achieved at the expense of folivory, which is much reduced in Sumatra--especially in H. lar (4% of diet)- and is limited almost entirely to immature foliage. The expected decline in protein intake resulting from diminished folivory in Sumatra may be counterbalanced by observed increases in insectivory, which is especially pronounced in lar gibbons. Interspecific dietary segregation emerges most clearly in how individuals of each species supplement their similarly fig-dominated diets. Siamang rely more on immature foliage--primarily from lianas, which generate young leaves more reliably and abundantly than trees do. Conversely, lar gibbons exploit the pulpy fruit of trees and lianas more heavily than siamang do. This general pattern occurs where the two species coexist in Malaysia, thereby suggesting a substantive interspecific difference that is somewhat greater in the insular populations.
Sympatric gibbon species Hylobates lar and H. syndactylus were censused on a mountain in Malaya (West Malaysia). Habitat quality was assessed between 380- and 1,525-m altitudes. H. syndactylus was found to occur up to altitudes higher than does H. lar, and this is discussed with reference to the two species' divergent foraging strategies indicated by previous research. It is suggested that gibbons are restricted in their altitudinal range by an increasingly unfavourable ratio of food consumed to energy expended in its location, caused by a reduced food-source density and more difficult terrain at higher elevations.
The monthly medians of the distances traveled daily by siamang and lar gibbons are negatively correlated with rainfall and positively correlated with the separate and combined abundance of different food categories. The latter correlations indicate that the apes follow a policy of cutting their losses by reducing travel when food abundance falls.
Wild, adult siamang were observed for over 800 h in lowland dipterocarp forest in the Krau Game Reserve, Pahang, West Malaysia. Siamang use four patterns of locomotion: brachiation, climbing, bipedalism and leaping. The pattern of locomotion used by the siamang varies with the size of arboreal supports and with major behavioral activity. Travel is primarily by brachiation along large boughs. Locomotion during feeding is primarily climbing among small branches. In feeding, siamang use suspensory postures among small supports and seated postures on large supports. Comparison of siamang locomotion and posture with that of other apes suggest that quadramanous climbing during feeding is the basic hominoid locomotor adaptation.
Recordings were made and analyzed of the female dominated duet songs by eight adult pairs of wild agile gibbons from two sites in Peninsular Malaysia. A statistical analysis of their songs revealed that individuality occurred throughout the females' songs from both sites. Individuality in gibbon songs may allow singing individuals to more efficiently and effectively locate and identify neighboring nonmate conspecifics.
Taste perception is an essential function that provides valuable dietary and sensory information, which is crucial for the survival of animals. Studies into the evolution of the sweet taste receptor gene (TAS1R2) are scarce, especially for Bornean endemic primates such as Nasalis larvatus (proboscis monkey), Pongo pygmaeus (Bornean orangutan), and Hylobates muelleri (Muller's Bornean gibbon). Primates are the perfect taxa to study as they are diverse dietary feeders, comprising specialist folivores, frugivores, gummivores, herbivores, and omnivores. We constructed phylogenetic trees of the TAS1R2 gene for 20 species of anthropoid primates using four different methods (neighbor-joining, maximum parsimony, maximum-likelihood, and Bayesian) and also established the time divergence of the phylogeny. The phylogeny successfully separated the primates into their taxonomic groups as well as by their dietary preferences. Of note, the reviewed time of divergence estimation for the primate speciation pattern in this study was more recent than the previously published estimates. It is believed that this difference may be due to environmental changes, such as food scarcity and climate change, during the late Miocene epoch, which forced primates to change their dietary preferences. These findings provide a starting point for further investigation.
Mutualistic and antagonistic plant-animal interactions differentially contribute to the maintenance of species diversity in ecological communities. Although both seed dispersal and predation by fruit-eating animals are recognized as important drivers of plant population dynamics, the mechanisms underlying how seed dispersers and predators jointly affect plant diversity remain largely unexplored. Based on mediating roles of seed size and species abundance, we investigated the effects of seed dispersal and predation by two sympatric primates (Nomascus concolor and Trachypithecus crepusculus) on local plant recruitment in a subtropical forest of China. Over a 26 month period, we confirmed that these primates were functionally distinct: gibbons were legitimate seed dispersers who dispersed seeds of 44 plant species, while langurs were primarily seed predators who destroyed seeds of 48 plant species. Gibbons dispersed medium-seeded species more effectively than small- and large-seeded species, and dispersed more seeds of rare species than common and dominant species. Langurs showed a similar predation rate across different sizes of seeds, but destroyed a large number of seeds from common species. Due to gut passage effects, gibbons significantly shortened the duration of seed germination for 58% of the dispersed species; however, for 54% of species, seed germination rates were reduced significantly. Our study underlined the contrasting contributions of two primate species to local plant recruitment processes. By dispersing rare species and destroying the seeds of common species, both primates might jointly maintain plant species diversity. To maintain healthy ecosystems, the conservation of mammals that play critical functional roles needs to receive further attention.
The primary objective of this project was to study the life cycle and ecology of Plasmodium pitheci, a malaria parasite of the orang-utan. The field work was based on the orang-utan rehabilitation centre in the Sepilok Forest Reserve of eastern Sabah. Two visits were made to Sepilok, the first in February and March, 1972, and the second (by W.P.) in January 1974. On the first visit two species of "surrogate host" were taken to Sabah, i.e. chimpanzees and Aotus monkeys for experimental work. The arboreal habitat of the orang-utan in the dipterocarp forests of eastern Sabah is described. In the Sepilok Forest Reserve dwell gibbons and leaf-monkeys, in addition to a small population of semi-domesticated and wild, free-ranging orang-utans of various ages. Although numerous species of anopheline mosquitoes have been collected in eastern Sabah, longitudinal studies are not available. Anopheles balabacensis was caught both attracted to orang-utans and to man at Sepilok. This species which is the main vector of human malaria in the north of Borneo, is suspected also of transmitting orang-utan malaria in this part of Sabah. Repeated blood examinations have been made on a number of orang-utans in the centre since 1966 and a high prevalence of infection was recorded with Plasmodium pitheci. In 1966 10 out of 19 animals had demonstrable parasitaemia. Detailed case histories are presented to show the course of parasitaemia in several orang-utans. Infections of P. pitheci were found to run a very chronic course. During the 1972 expedition a second, previously undescribed malaria parasite of the orang-utan was discovered, and was named P. silvaticum. The new parasite was successfully transmitted both by blood inoculation and, later, by sporozoite inoculation, into splenectomized chimpanzees. Although both species of malaria parasite may cause transitory signs of illness, orang-utans in general appear to be little discomforted by the infection. The animals do however suffer from other infectious diseases such as amoebic and balantidial dysentery, and melioidosis is a serious natural hazard which may have accounted for several deaths of wild orang-utans. An unidentified, intraerythrocytic structure that appeared in the blood of one chimpanzee, which had been inoculated with blood from an orang-utan, may have contributed to its death. Detailed descriptions and illustrations of P. pitheci and P. silvaticum are given. All stages of the life cycle of P. silvaticum are known (the tissue stages having been described in the liver of a "surrogate host", the chimpanzee) but only the blood and sporogonic stages of P. pitheci have been seen. This species was not infective to a chimpanzee, although there is an earlier report of a transient infection in this host by other workers. In the blood both parasites showed a tertian periodicity. From the appearance of the tissue schizonts on the seventh day it was estimated that the complete pre-erythrocytic cycle of P. silvaticum in the chimpanzee would occupy 8 days. P...
Ficus species are keystone plants in tropical rainforests, and hemi-epiphytic figs play a notably important role in forest ecosystems. Because hemi-epiphytic figs have strict germination requirements, germination and establishment stages regulate their populations. Despite the ecological importance of hemi-epiphytic figs in the rainforests, seed dispersal systems by fig-eating animals under natural conditions remain unknown because of the difficulty in tracing the destiny of dispersed seeds in the canopy. Therefore, seed dispersal effectiveness (SDE) has never been evaluated for hemi-epiphytic figs. We evaluated the SDE of hemi-epiphytic figs using qualitative and quantitative components by three relatively large-sized (> 3 kg) arboreal and volant animals in Bornean rainforests that largely depend on fig fruits in their diets: binturongs Arctictis binturong, Mueller's gibbons Hylobates muelleri, and helmeted hornbills Rhinoplax vigil. The SDE values of binturongs was by far the highest among the three study animals. Meanwhile, successful seed dispersal of hemi-epiphytic figs by gibbons and helmeted hornbills is aleatory and rare. Given that seed deposition determines the fate of hemi-epiphytic figs, the defecatory habits of binturongs, depositing feces on specific microsites in the canopy, is the most reliable dispersal method, compared to scattering feces from the air or upper canopy. We showed that reliable directed dispersal of hemi-epiphytic figs occurs in high and uneven canopy of Bornean rainforests. This type of dispersal is limited to specific animal species, and therefore it may become one of the main factors regulating low-success hemi-epiphytic fig recruitment in Bornean rainforests.
The world's largest terrestrial animals (megafauna) can play profound roles in seed dispersal. Yet, the term 'megafauna' is often used to encompass a diverse range of body sizes and physiologies of, primarily, herbivorous animals. To determine the extent to which these animals varied in their seed dispersal effectiveness (SDE), we compared the contribution of different megafauna for the large-fruited Platymitra macrocarpa (Annonaceae), in a tropical evergreen forest in Thailand. We quantified 'seed dispersal effectiveness' by measuring the quantity and quality contributions of all consumers of P. macrocarpa fruit. Seed dispersal quantity was the proportion of the crop consumed by each species. Quality was defined as the proportion of seeds handled by each animal taxon that survived to produce a 2-month seedling. Megafauna (elephants, sambar deer, bears) dispersed 78% of seeds that produced seedlings, with 21% dispersed by gibbons (a medium-sized frugivore). The main megafaunal consumers displayed different dispersal strategies. Elephants were the most effective dispersers (37% of seedlings) and they achieved this by being high-quality and low-quantity dispersers. Bears displayed a similar strategy but were especially rare visitors to the trees (24% of the total seedlings produced). Sambar were high-quantity dispersers, but most seeds they handled did not survive and they were responsible for only 17% of seedlings. Gibbons displayed a high SDE relative to their body size, but they probably cannot match the role of elephants despite being more regular consumers of the fruit. The low density and poor regeneration of P. macrocarpa in the study site suggest that current dispersal rates by megafauna are insufficient, possibly reflecting reduced or missing megafauna populations. We show that different megafaunal species disperse seeds in different ways and may make unique contributions to the reproductive success of the plant species.
Abductor pollicis longus (APL) muscle is known to exhibit different variations with respect to its attachments. Various studies have reported the splitting of the APL muscle. Comparative anatomical findings of split insertion of APL is commonly found in chimpanzees, gorillas and gibbons. In the present study, we describe an anomalous APL muscle, which originated from the posterior surface of the shaft of the radius and ulna and traversed a course deep to the extensor retinaculum. Interestingly, immediately after emerging form the deeper aspect of extensor retinaculum, the thin tendon of the APL muscle continued again as a muscular belly in relation to the dorsolateral part of the 1st metacarpal bone, to end as a tendon with its attachment to the base of the proximal phalanx. Such an unusual variation of APL with its attachment into proximal phalanx is a rare finding and may be of importance in altering the mechanics of the thumb during abduction. The clinical significance of such an anatomical variation of APL may be important during reconstructive surgeries involving thumb and also of academic interest.
Medetomidine (0.02-0.06 mg/kg) in combination with zolazepam-tiletamine (0.8-2.3 mg/kg) were evaluated for reversible anesthesia in four species of Southeast Asian primates: Bornean orangutan (Pongo pygmaeus pygmaeus), Bornean gibbon (Hylobates muelleri), long-tailed macaque (Macaca fascicularis), and pig-tailed macaque (Macaca nemestrina). Twenty-three anesthetic procedures of captive-held and free-ranging primates were studied in Sabah, Malaysia. The induction was smooth and rapid. Respiratory and heart rates were stable throughout anesthesia, whereas body temperature and systolic arterial blood pressure decreased significantly. Atipamezole at five times the medetomidine dose effectively reversed anesthesia, with first signs of recovery within 3-27 min.