Displaying all 2 publications

Abstract:
Sort:
  1. Singh Y, Samuel VP, Dahiya S, Gupta G, Gillhotra R, Mishra A, et al.
    Biotechnol Appl Biochem, 2019 Sep;66(5):715-719.
    PMID: 31314127 DOI: 10.1002/bab.1799
    Homocysteine [HSCH2 CH2 CH(NH2 )COOH] (Hcy) is a sulfur-containing amino acid of 135.18 Da of molecular weight, generated during conversion of methionine to cysteine. If there is a higher accumulation of Hcy in the blood, that is usually above 15 µmol/L, it leads to a condition referred to as hyperhomocysteinemia. A meta-analysis of observational study suggested an elevated concentration of Hcy in blood, which is termed as the risk factors leading to ischemic heart disease and stroke. Further experimental studies stated that Hcy can lead to an increase in the proliferation of vascular smooth muscle cells and functional impairment of endothelial cells. The analyses confirmed some of the predictors for Hcy presence, such as serum uric acid (UA), systolic blood pressure, and hematocrit. However, angiotensin-converting enzyme inhibitors angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) alone are inadequate for controlling UA and creatinine level, although the addition of folic acid may be beneficial in hypertensive patients who are known to have a high prevalence of elevated Hcy. We hypothesized that combination therapy with an ARB (olmesartan) and folic acid is a promising treatment for lowering the UA and creatinine level in hyperhomocysteinemia-associated hypertension.
    Matched MeSH terms: Hyperhomocysteinemia/drug therapy*
  2. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al.
    Cell Death Dis, 2016 12 08;7(12):e2513.
    PMID: 27929536 DOI: 10.1038/cddis.2016.374
    Hyperhomocysteinemia (HHcy) is a well-known risk factor for stroke; however, its underlying molecular mechanism remains unclear. Using both mouse and cell culture models, we have provided evidence that impairment of autophagy has a central role in HHcy-induced cellular injury in the mouse brain. We observed accumulation of LC3B-II and p62 that was associated with increased MTOR signaling in human and mouse primary astrocyte cell cultures as well as a diet-induced mouse model of HHcy, HHcy decreased lysosomal membrane protein LAMP2, vacuolar ATPase (ATP6V0A2), and protease cathepsin D, suggesting that lysosomal dysfunction also contributed to the autophagic defect. Moreover, HHcy increased unfolded protein response. Interestingly, Vitamin B supplementation restored autophagic flux, alleviated ER stress, and reversed lysosomal dysfunction due to HHCy. Furthermore, the autophagy inducer, rapamycin was able to relieve ER stress and reverse lysosomal dysfunction caused by HHcy in vitro. Inhibition of autophagy by HHcy exacerbated cellular injury during oxygen and glucose deprivation and reperfusion (OGD/R), and oxidative stress. These effects were prevented by Vitamin B co-treatment, suggesting that it may be helpful in relieving detrimental effects of HHcy in ischemia/reperfusion or oxidative stress. Collectively, these findings show that Vitamin B therapy can reverse defects in cellular autophagy and ER stress due to HHcy; and thus may be a potential treatment to reduce ischemic damage caused by stroke in patients with HHcy.
    Matched MeSH terms: Hyperhomocysteinemia/drug therapy
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links