Displaying all 4 publications

Abstract:
Sort:
  1. Yap JKY, Moriyama M, Iwasaki A
    J Immunol, 2020 Jul 15;205(2):307-312.
    PMID: 32493814 DOI: 10.4049/jimmunol.2000513
    The inflammatory response to severe acute respiratory syndrome-related coronavirus 2 infection has a direct impact on the clinical outcomes of coronavirus disease 2019 patients. Of the many innate immune pathways that are engaged by severe acute respiratory syndrome-related coronavirus 2, we highlight the importance of the inflammasome pathway. We discuss available pharmaceutical agents that target a critical component of inflammasome activation, signaling leading to cellular pyroptosis, and the downstream cytokines as a promising target for the treatment of severe coronavirus disease 2019-associated diseases.
    Matched MeSH terms: Inflammasomes/drug effects*
  2. Singh N, Golime R, Kumar A, Roy T
    Mol Neurobiol, 2025 Jan;62(1):461-474.
    PMID: 38867111 DOI: 10.1007/s12035-024-04294-2
    Acute nerve agent exposure can kill a person within minutes or produce multiple neurotoxic effects and subsequent brain damage with potential long-term adverse outcomes. Recent abuse of nerve-agents on Syrian civilians, during Japan terrorist attacks, and personal assassinations in the UK, and Malaysia indicate their potential threat to world population. Existing nerve agent antidotes offer only incomplete protection especially, if the treatment is delayed. To develop the effective drugs, it is advantageous to elucidate the underlying mechanisms of nerve agent-induced multiple neurological impairments. This study aimed to investigate the molecular basis of neuroinflammation during nerve agent toxicity with focus on inflammasome-associated proteins and neurodegeneration. In rats, NOD-like receptor family pyrin domain containing 3 (NLRP3), and glial fibrillary acidic protein (GFAP) immunoreactivity levels were considerably increased in the hippocampus, piriform cortex, and amygdala areas after single subcutaneous soman exposure (90 µg/kg-1). Western analysis indicated a notable increase in the neuroinflammatory indicator proteins, high mobility group box 1 (HMGB1) and inducible nitric oxide synthase (iNOS) levels. The presence of fluorojade-C-stained degenerating neurons in distinct rat brain areas is indicating the neurodegeneration during nerve agent toxicity. Pre-treatment with galantamine (3 mg/kg, - 30 min) followed by post-treatment of atropine (10 mg/kg, i.m.) and midazolam (5 mg/kg, i.m.), has completely protected animals from death induced by supra-lethal dose of soman (2XLD50) and reduced the neuroinflammatory and neurodegenerative changes. Results highlight that this new prophylactic and therapeutic drug combination might be an effective treatment option for soldiers deployed in conflict areas and first responders dealing with accidental/deliberate release of nerve agents.
    Matched MeSH terms: Inflammasomes/drug effects
  3. Yaw ACK, Chan EWL, Yap JKY, Mai CW
    J Cancer Res Clin Oncol, 2020 Sep;146(9):2219-2229.
    PMID: 32507974 DOI: 10.1007/s00432-020-03274-y
    PURPOSE: Pancreatic cancer is a lethal form of cancer that can be triggered by prolonged or acute inflammation of the pancreas. Inflammation have been shown to be regulated by a group of key protein molecules known as the inflammasomes. The NLRP3 inflammasome is the most studied inflammasome and have been strongly implicated to regulate cancer cell proliferation. Therefore, this study aimed to examine the regulation of NLRP3 inflammasome under LPS-induced inflammation and its role in modulating cell proliferation in a panel of pancreatic cancer cells.

    METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.

    RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.

    CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.

    Matched MeSH terms: Inflammasomes/drug effects*
  4. Sok SPM, Ori D, Wada A, Okude H, Kawasaki T, Momota M, et al.
    Int Immunol, 2021 06 18;33(7):373-386.
    PMID: 33830232 DOI: 10.1093/intimm/dxab016
    The nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing (NLRP) 3 inflammasome is a multiprotein complex that triggers Caspase-1-mediated IL-1β production and pyroptosis, and its dysregulation is associated with the pathogenesis of inflammatory diseases. 1'-Acetoxychavicol acetate (ACA) is a natural compound in the rhizome of tropical ginger Alpinia species with anti-microbial, anti-allergic and anti-cancer properties. In this study, we found that ACA suppressed NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and human THP-1 monocytes. ACA inhibited Caspase-1 activation and IL-1β production by NLRP3 agonists such as nigericin, monosodium urate (MSU) crystals, and ATP. Moreover, it suppressed oligomerization of the adapter molecule, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1-mediated cleavage of pyroptosis executor Gasdermin D. Mechanistically, ACA inhibited generation of mitochondrial reactive oxygen species (ROS) and prevented release of oxidized mitochondrial DNA, which trigger NLRP3 inflammasome activation. ACA also prevented NLRP3 inflammasome activation in vivo, as evidenced in the MSU crystal-induced peritonitis and dextran sodium sulfate-induced colitis mouse models accompanied by decreased Caspase-1 activation. Thus, ACA is a potent inhibitor of the NLRP3 inflammasome for prevention of NLRP3-associated inflammatory diseases.
    Matched MeSH terms: Inflammasomes/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links