Alzheimer's disease is an irreversible neurodegenerative disease, which accounts for most dementia cases. Neuroinflammation is increasingly recognised for its roles in Alzheimer's disease pathogenesis which, in part, links amyloid-beta to neuronal death. Neuroinflammatory signalling can be exhibited by neurons themselves, potentially leading to widespread neuronal cell death, although neuroinflammation is commonly associated with glial cells. The presence of the inflammasomes such as nucleotide-binding leucine-rich repeat receptors protein 1 in neurons accelerates amyloid-beta -induced neuroinflammation and has been shown to trigger neuronal pyroptosis in murine Alzheimer's disease models. However, the pathways involved in amyloid-beta activation of inflammasomes have yet to be elucidated. In this study, a gene trap mutagenesis approach was utilised to resolve the genes functionally involved in inflammasome signalling within neurons, and the mechanism behind amyloid-beta-induced neuronal death. The results indicate that amyloid-beta significantly accelerated neuroinflammatory cell death in the presence of a primed inflammasome (the NLR family pyrin domain-containing 1). The mutagenesis screen discovered the atypical mitochondrial Ras homolog family member T1 as a significant contributor to amyloid-beta-induced inflammasome -mediated neuronal death. The mutagenesis screen also identified two genes involved in transforming growth factor beta signalling, namely Transforming Growth Factor Beta Receptor 1 and SNW domain containing 1. Additionally, a gene associated with cytoskeletal reorganisation, SLIT-ROBO Rho GTPase Activating Protein 3 was found to be neuroprotective. In conclusion, these genes could play important roles in inflammasome signalling in neurons, which makes them promising therapeutic targets for future drug development against neuroinflammation in Alzheimer's disease.
Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.