Nocistatin and nociceptin/orphanin FQ (N/OFQ) are two neuropeptides which may have opposite effects in several biological functions but their neuro-anatomical sites of interaction are not fully clear. We investigated interaction between the effect of intracerebroventricular (i.c.v.) injection of nocistatin and N/OFQ, on c-Fos expression in the mouse thalamus, using c-Fos immunohistochemistry. We found that co-injection of nocistatin with N/OFQ significantly modulates c-Fos expression in the thalamus. The present study strongly suggests that "Nocistatin-Nociceptin" interaction system in the thalamus may be the promising neuromodulatory sites in the investigation of unlocking their possible therapeutic circuit in nociception, memory and anxiety.
Various lines of evidence suggest a role in cognition for the endogenous neuropeptide, neurotensin, involving an interaction with the central nervous system cholinergic pathways. A preliminary study has shown that central administration of neurotensin enhances spatial and nonspatial working memory in the presence of scopolamine, a muscarinic receptor antagonist which induces memory deficits. Utilizing similar methods, the present study employed a two-trial novel object discrimination task to determine the acute effect of a neurotensin peptide analogue with improved metabolic stability, PD149163, on recognition memory in Lister hooded rats. Consistent with previous findings with neurotensin, animals receiving an intracerebroventricular injection of PD149163 (3 microg) significantly discriminated the novel from familiar object during the choice trial. In addition, a similar dose of PD149163 restored the scopolamine-induced deficit in novelty recognition. The restoration effect on scopolamine-induced amnesia produced by PD149163 was blocked by SR142948A, a nonselective neurotensin receptor antagonist, at a dose of 1 mg/kg (intraperitonial) but not at 0.1 mg/kg. In conclusion, the present results confirm a role for neurotensin in mediating memory processes, possibly via central cholinergic mechanisms.
Several lines of evidence indicate that beta amyloid (β-A) production, neurofibrillary tangles and neuroinflammation are interrelated in the pathogenesis of Alzheimer's disease (AD). AD is associated with enhanced β-A production and accumulation resulting in neuroinflammation probably via activation of lipoxygenase (LOX) and cyclooxygenase (COX) pathways. Therefore, the present study was designed to investigate the role of LOX and COX inhibitors (zafirlukast and valdecoxib) in amyloidogenesis in β-A1-42 oligomer induced experimental AD in rats. The behavioral activities were assessed using actophotometer, novel object recognition test (ORT), Morris water maze (MWM) followed by biochemical assessments, determination of proinflammatory cytokines and mediators (TNF-α, IL-1β and PGE2), β-A1-42 levels and histopathological analysis. ICV administration of β-A1-42 oligomer produced significant impairment in memory consolidation. In addition to this significant increase in mito-oxidative stress, neuroinflammatory markers, acetylcholinesterase (AChE) toxicity, β-A1-42 level, neuronal cell death and neuroinflammation are more profound in β-A1-42 oligomer treated AD rats. Administration of zafirlukast (15 and 30mg/kg), and valdecoxib (5 and 10mg/kg) significantly improved the behavioral performances and showed significant reversal of mito-oxidative damage declining the neuroinflammation in β-A1-42 oligomer treated rats. Furthermore, more profound effects were observed at the sub-therapeutic dose combination of zafirlukast (15mg/kg) and valdecoxib (5mg/kg). The results of the present study indicate that protective effects of zafirlukast and valdecoxib are achieved through the blockade of release of LOX and COX metabolites therefore, representing a new therapeutic target for treating AD and other neurodegenerative disorders.