Displaying all 2 publications

Abstract:
Sort:
  1. Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, et al.
    Parasit Vectors, 2017 Apr 26;10(1):204.
    PMID: 28441959 DOI: 10.1186/s13071-017-2139-z
    BACKGROUND: Seroepidemiology can provide evidence for temporal changes in malaria transmission and is an important tool to evaluate the effectiveness of control interventions. During the early 2000s, Vanuatu experienced an acute increase in malaria incidence due to a lapse in funding for vector control. After the distribution of subsidised insecticide-treated nets (ITNs) resumed in 2003, malaria incidence decreased in the subsequent years. This study was conducted to find the serological evidence supporting the impact of ITN on exposure to Anopheles vector bites and parasite prevalence.

    METHODS: On Ambae Island, blood samples were collected from 231 and 282 individuals in 2003 and 2007, respectively. Parasite prevalence was determined by microscopy. Antibodies to three Plasmodium falciparum (PfSE, PfMSP-119, and PfAMA-1) and three Plasmodium vivax (PvSE, PvMSP-119, and PvAMA-1) antigens, as well as the Anopheles-specific salivary antigen gSG6, were detected by ELISA. Age-specific seroprevalence was analysed using a reverse catalytic modelling approach to estimate seroconversion rates (SCRs).

    RESULTS: Parasite rate decreased significantly (P 

    Matched MeSH terms: Insect Proteins/immunology
  2. Hempolchom C, Sookrung N, Srisuka W, Reamtong O, Sakolvaree Y, Chaicumpa W, et al.
    Parasitol Res, 2019 Aug;118(8):2353-2359.
    PMID: 31263951 DOI: 10.1007/s00436-019-06383-x
    Simulium dermatitis is an IgE-mediated skin reaction in animals and humans caused by the bites of black flies. Although Simulium nigrogilvum has been incriminated as the main human-biting black fly species in Thailand, information on its salivary allergens is lacking. Salivary gland extract of S. nigrogilvum females was subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the separated components were applied onto nitrocellulose membranes for immunoblotting, which was performed by probing the protein blots with sera from 17 individuals who were allergic to the bites of S. nigrogilvum. IgE-reactive protein bands were characterized further by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Nine protein bands (79, 42, 32, 25, 24, 22, 15, 13, and 11 kDa) were recognized in the serum of the subjects. Four of the nine protein bands (32, 24, 15, and 11 kDa) showed IgE reactivity in all (100%) of the tested sera, and they were identified as salivary secreted antigen 5-related protein, salivary serine protease, erythema protein, and hypothetical secreted protein, respectively. Three other proteins, salivary serine protease (25 kDa), salivary D7 secreted protein (22 kDa), and hypothetical protein (13 kDa), reacted with > 50% of the sera. The relevance of the identified protein bands as allergens needs to be confirmed by using pure recombinant proteins, either in the in vivo skin prick test or in vitro detection of the specific IgE in the serum samples of allergic subjects. This will be useful for the rational design of component-resolved diagnosis and allergen immunotherapy for the allergy mediated by the bites of black flies.
    Matched MeSH terms: Insect Proteins/immunology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links