1. Debrisoquine hydroxylation phenotyping was carried out in 97 Chinese and 97 Malay healthy volunteers. 2. No poor metabolizer was found in the Chinese population. Using a metabolic ratio antimode of 10.0, two poor metabolizers were present amongst the Malays studied.
1-Methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol, commonly known as salsolinol, is a compound derived from dopamine. It was first discovered in 1973 and has gained attention for its role in Parkinson's disease. Salsolinol and its derivatives were claimed to play a role in the pathogenesis of Parkinson's disease as a neurotoxin that induces apoptosis of dopaminergic neurons due to its structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its ability to induce Parkinsonism. In this article, we discussed the biosynthesis, distribution and blood-brain barrier permeability of salsolinol. The roles of salsolinol in a healthy brain, particularly the interactions with enzymes, hormone and catecholamine, were reviewed. Finally, we discussed the involvement of salsolinol and its derivatives in the pathogenesis of Parkinson's disease.
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses. Molecular docking revealed that SG-A exhibited a stronger affinity for MLKL (-9.40 kcal/mol) compared to the co-crystallized ligand (-6.29 kcal/mol), while its affinity for RIPK1 (-6.37 kcal/mol) and RIPK3 (-7.01 kcal/mol) was lower. MD simulations further demonstrated the stability of SG-A within the MLKL site, with RMSD values stabilizing between 1.4 and 3.3 Å over 300 ns, indicating a consistent interaction pattern. RMSF analysis indicated the preservation of protein backbone flexibility, with average fluctuations under 1.7 Å. The radius of gyration (Rg) results indicated a consistent value of ~15.3 Å across systems, confirming the role of SG-A in maintaining protein integrity. Notably, SG-A maintains two critical H-bonds within the active site of MLKL, reinforcing the stability of the interaction. Principal component analysis (PCA) indicated a significant reduction in MLKL's conformational space upon SG-A binding, implying enhanced stabilization. Dynamic cross-correlation map (DCCM) analysis further revealed that SG-A induced highly correlated motions, reducing internal fluctuations within MLKL compared to the co-crystallized ligand. MM-PBSA revealed the enhanced binding efficacy of SG-A, with a significant binding free energy of -31.03 ± 0.16 kcal/mol against MLKL, surpassing that of the control (23.96 ± 0.11 kcal/mol). In addition, the individual residue contribution analysis highlighted key interactions, with ARG149 showing a significant contribution (-176.24 kcal/mol) in the MLKL-SG-A complex. DFT and MEP studies corroborated these findings, revealing that the electronic structure of SG-A is conducive to stable binding interactions, characterized by a narrow band gap (~0.16 units) and distinct electrostatic potential favourable for necroptosis induction. In conclusion, SG-A has emerged as a compelling inducer of necroptosis for breast cancer therapy, warranting further experimental validation to fully realize its therapeutic potential.