The main purpose of this article is to develop a new and reliable saliva-based clinical diagnostic method for the early detection of oral squamous cell carcinoma (OSCC). This study used an immunoproteomic approach which allowed the detection of immunogenic host proteins in patients' samples using pooled human antibodies. In an attempt to investigate potential biomarkers of OSCC, two-dimensional electrophoresis (2-DE) followed by immunoblotting of saliva from patients and controls were compared. The protein spots of interest were analyzed using 2-DE image analyzer and subsequently subjected to MALDI-TOF/TOF and then matched against NCBI database. The result showed that four protein clusters, namely Human Pancreatic Alpha-amylase (HPA), Human Salivary Amylase (sAA), keratin-10 (K-10), and Ga Module Complexed with Human Serum Albumin (GA-HSA), had exhibited immunoreactivity in western blot. The results are suggestive of the potential use of the differentially expressed saliva protein as tumor biomarkers for the detection of OSCC. However, further studies are recommended to validate this finding.
In dental implant treatment, the long-term prognosis is dependent on the biologic seal formed by the soft tissue around the implant. The in vitro investigation of the implant-soft tissue interface is usually carried out using a monolayer cell-culture model that lacks a polarized-cell phenotype. This study developed a tissue-engineered three-dimensional oral mucosal model (3D OMM) to investigate the implant-soft tissue interface.