Ethanol is a testicular toxin and it causes fertility abnormalities with low sperm count and impaired sperm motility in men. The present study was designed to investigate plasma testosterone level and hypothalamic pituitary gonadal (HPG) axis function in alcoholic men and also effect of ethanol on systemic oxidative stress. Forty six male alcohol abusers in the age group 20-40 years were selected. Fifty five, males in the same age group served as control. Alcohol abusers had significantly low plasma testosterone with low luteinizing hormone and follicle stimulating hormone. In addition they had significantly high thiobarbituric acid reactive substances (TBARS), superoxide dismutase and glutathione S-transferase, and low glutathione, ascorbic acid, catalase, glutathione reductase and glutathione peroxidase. Moreover, serum testosterone level in alcoholics negatively correlated with duration of alcohol abuse, and TBARS. Duration dependent decreased serum testosterone level in alcohol abusers might be due to 1) increased oxidative stress which can damage Leydig and supporting Sertoli cells and 2) impaired HPG axis.
Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.