OBJECTIVE: We have conducted a systematic review of two major (FIGHT and LIVE) placebo-controlled trials of liraglutide and its clinical effect on the ejection fraction of subjects with heart failure.
METHODS: Medline data was retrieved for trials involving liraglutide from 2012 to 2020. The inclusion criteria for trials were: subjects with or without type 2 diabetes mellitus (T2DM), subjects with heart failure with rLVEF, major trials (phase II or III) on liraglutide, trials included liraglutide with defined efficacy primary outcome of patients with heart failure with rLVEF. The search was limited to the English language, whereby two trials [FIGHT and LIVE] had been included and two trials were excluded due to different primary outcomes. Participants (541) had been randomized for either liraglutide or placebo for 24 weeks.
RESULTS: In the FIGHT trial the primary intention-to-treat, sensitivity, and diabetes subgroup analyses have shown no significant between-group difference in the global rank scores (mean rank of 146 in the liraglutide group versus 156 in the placebo group; Wilcoxon rank-sum P=.31), number of deaths, re-hospitalizations for heart failure, or the composite of death or change in NT-pro BNP level (P= .94). In the LIVE trial, the change in the left ventricular ejection fraction (LVEF) from baseline to week 24 was not significantly different between treatment groups. The overall discontinuation rate of liraglutide was high in the FIGHT trial (29%, 86) as compared to that in the LIVE trial (11.6%, 28).
CONCLUSION: FIGHT and LIVE trials have demonstrated that liraglutide use in subjects with heart failure and rLVEF was implicated with an increased adverse risk of heart failure-related outcomes.
METHODS: Patients who were 10 to less than 17 years of age were randomly assigned, in a 1:1 ratio, to receive subcutaneous liraglutide (up to 1.8 mg per day) or placebo for a 26-week double-blind period, followed by a 26-week open-label extension period. Inclusion criteria were a body-mass index greater than the 85th percentile and a glycated hemoglobin level between 7.0 and 11.0% if the patients were being treated with diet and exercise alone or between 6.5 and 11.0% if they were being treated with metformin (with or without insulin). All the patients received metformin during the trial. The primary end point was the change from baseline in the glycated hemoglobin level after 26 weeks. Secondary end points included the change in fasting plasma glucose level. Safety was assessed throughout the course of the trial.
RESULTS: Of 135 patients who underwent randomization, 134 received at least one dose of liraglutide (66 patients) or placebo (68 patients). Demographic characteristics were similar in the two groups (mean age, 14.6 years). At the 26-week analysis of the primary efficacy end point, the mean glycated hemoglobin level had decreased by 0.64 percentage points with liraglutide and increased by 0.42 percentage points with placebo, for an estimated treatment difference of -1.06 percentage points (P<0.001); the difference increased to -1.30 percentage points by 52 weeks. The fasting plasma glucose level had decreased at both time points in the liraglutide group but had increased in the placebo group. The number of patients who reported adverse events was similar in the two groups (56 [84.8%] with liraglutide and 55 [80.9%] with placebo), but the overall rates of adverse events and gastrointestinal adverse events were higher with liraglutide.
CONCLUSIONS: In children and adolescents with type 2 diabetes, liraglutide, at a dose of up to 1.8 mg per day (added to metformin, with or without basal insulin), was efficacious in improving glycemic control over 52 weeks. This efficacy came at the cost of an increased frequency of gastrointestinal adverse events. (Funded by Novo Nordisk; Ellipse ClinicalTrials.gov number, NCT01541215.).