Displaying all 2 publications

Abstract:
Sort:
  1. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
    Matched MeSH terms: Melanins/genetics
  2. Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS
    Arch. Dermatol. Res., 2011 Apr;303(3):161-70.
    PMID: 20981431 DOI: 10.1007/s00403-010-1089-5
    Ficus deltoidea (Mas cotek) water extract has been widely used for woman health in Malaysia. Our investigation focused to identify anti-melanogenic efficacy of F. deltoidea since it has been known to have strong anti-oxidant activities. Anti-melanogenic effect of F. deltoidea extract was analyzed using cultured B16F1 melanoma cells. Cytotoxicity of the extract was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and determined the highest concentration of the extract that did not affect cell viability as 0.1% (w/v). α-MSH-induced melanin synthesis was significantly inhibited with dose-dependent manner by treatment of F. deltoidea leave extract, which was comparable to that of kojic acid. The extract directly inhibited mushroom tyrosinase activity and intracellular tyrosinase activity of B16F1 as well. The inhibition of intracellular tyrosinase activity was found to be exerted at the protein expression level when analyzed by immunoblot and tyrosinase zymography. The expression of microphthalmia-associated transcription factor (MITF) was also reduced by the F. deltoidea extract. In conclusion, F. deltoidea extract has strong anti-melanogenic activity that is exerted by direct inhibition of tyrosinase enzyme activity and by down-regulation of the expression of genes involved in the melanogenesis pathways. Collectively, data shown in this study strongly suggest that F. deltoidea extract has potential to be used as a novel depigmenting agent for cosmetics.
    Matched MeSH terms: Melanins/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links