Globally, the poultry industry is 1 of the most advanced livestock industries. Feed contributes to the biggest proportion (65-70%) of the production cost. Most feed ingredients in Malaysia are imported, which contributes to the high food bill annually, and alternative feed formulation may help decrease the cost of poultry feed. Feed formulation are improved to efficiently meet the dietary requirements of the broilers and 1 of the ways is by reducing the level of crude protein in the diet while supplementing essential amino acids. In this study, the effects of methionine and lysine, which are the 2 most limiting amino acids in the chicken diet, were supplemented in a low crude protein diet, and its effects on the growth and expression of immunity genes such as MUC2, SLC, GAL6, and LEAP-2 were studied. A total of 300 Cobb500 broilers were tested with 10 different dietary treatments. Experimental treatment diets consist of high, standard, and low levels of methionine and lysine in the diet with reduced crude protein. The control group consists of diet with standard levels of lysine, methionine, and crude protein as recommended for Cobb500 broilers. Ribonucleic acid was extracted from the jejunum, spleen, and liver for gene expression analysis which was performed with real-time polymerase chain reaction using SYBR Green chemistry. Results of the growth performance at 6 wk showed improved feed conversion ratio when lysine was increased by 0.2% in a low crude protein diet at 1.96 ± 0.11. Gene expression of MUC2 gene in the jejunum showed a significant increase across all experimental diets with the treatment with higher lysine in low crude protein diet with the highest increase of 3.8 times as compared with the control diet. The other genes expressed in the spleen and liver were mostly downregulated. It was concluded that supplementation of high lysine with standard methionine in a low crude protein diet performed better in terms of lowest feed conversion ratio and high upregulation of MUC2 gene.
This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN- γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN- γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens.
Oxidative stress contributes to cardiovascular diseases. We aimed to study the effects of palm tocotrienol-rich fraction (TRF) on plasma homocysteine and cardiac oxidative stress in rats fed with a high-methionine diet. Forty-two male Wistar rats were divided into six groups. The first group was the control. Groups 2-6 were fed 1% methionine diet for 10 weeks. From week 6 onward, folate (8 mg/kg diet) or palm TRF (30, 60 and 150 mg/kg diet) was added into the diet of groups 3, 4, 5 and 6. The rats were then killed. Palm TRF at 150 mg/kg and folate supplementation prevented the increase in plasma total homocysteine (4.14 ± 0.33 and 4.30 ± 0.26 vs 5.49 ± 0.25 mmol/L, p < 0.05) induced by a high-methionine diet. The increased heart thiobarbituric acid reactive substance in rats fed with high-methionine diet was also prevented by the supplementations of palm TRF (60 and 150 mg/kg) and folate. The high-methionine group had a lower glutathione peroxidase activity (49 ± 3 vs 69 ± 4 pmol/mg protein/min) than the control group. This reduction was reversed by palm TRF at 60 and 150 mg/kg diet (p < 0.05), but not by folate. Catalase and superoxide dismutase activities were unaffected by both methionine and vitamin supplementations. In conclusion, palm TRF was comparable to folate in reducing high-methionine diet-induced hyperhomocysteinemia and oxidative stress in the rats' hearts. However, palm TRF was more effective than folate in preserving the heart glutathione peroxidase enzyme activity.