Displaying all 2 publications

Abstract:
Sort:
  1. Puah SM, Puthucheary SD, Wang JT, Pan YJ, Chua KH
    ScientificWorldJournal, 2014;2014:590803.
    PMID: 25215325 DOI: 10.1155/2014/590803
    The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P = 0.049) at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.
    Matched MeSH terms: Microbial Viability/genetics
  2. Huwaidi A, Pathak N, Syahir A, Ikeno S
    Biochem Biophys Res Commun, 2018 09 05;503(2):910-914.
    PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095
    Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
    Matched MeSH terms: Microbial Viability/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links